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SUMMARY

This report details an investigation of video data compression applied to
microgravity space experiments using High Resolution High Frame Rate Video
Technology (HHVT). An extensive survey of methods of video data compression,
described in the open literature, was conducted. The survey examines compression
methods employing digital computing. The results of the survey are presented. They
include a description of each method and an assessment of image degradation and
video data parameters. An assessment is made of present and near term future
technology for implementation of video data compression in a high speed imaging
system. Results of the assessment are discussed and summarized in a tabular listing
of implementation status.

The results of a study of a baseline HHVT video system, and approaches for
implementation of video data compression, are presented. Case studies of three
microgravity experiments are presented and specific compression techniques and
implementations are recommended.

The results of the investigation conclude that video data compression approaches
for microgravity space experiments are experiment peculiar in requirements and no
one single approach is universally optimum. It is shown, for the experiments studied,
that data compression required is separable into two approaches: the first to limit
data rates for storage, and the second to reduce data rates for transmission. For high
resolution and/or high frame rate experiment requirements and real time compression,
hardware implementations are currently limited, by technology, to methods that can
be implemented using parallel processing and simple compression algorithms.
Although theoretically attractive, no approach could be identified for focal plane
processing alone, that could be implemented with state of the art hardware.



ACRONYMS

A

AC Alternating Current, the remaining coefficients in a image
transform

A/D Analog to Digital conversion

ASIC Application Specific Integrated Circuit

A-VQ Address-Vector Quantization

B

BTC Block Truncation Coding

C

CAQ Constant Area Quantization

CCIR Consultative Committee, International Radio

CCD Charge Coupled Device

CID Charge Injection Device

CMOS Complementary Metal Oxide Semiconductor

CR Conditional Replenishment or Compression Ratio

D

D/A Digital to Analog conversion

DC Direct Current, refers to the average pixel value in a transform

DCT Discrete Cosine Transform

DCT/DPCM Discrete Cosine Transform/Differential Pulse Code Modulation
DCT/MC Discrete Cosine Transform/Motion Compensation

DFT Discrete Fourier Transform

DM Delta Modulation

DPCM Differential Pulse Code Modulation

DSP Digital Signal Processing

G

GaAs Gallium Arsenide, a high speed semiconductor device
GSP Graphics System Processor

H

HDTV High Definition Television

HHVT High Resolution, High Frame Rate Video Technology
HVS Human Visual System



IDS Intensity Dependent Spread

K

KLT Karhunen-Loeve Transform

L

LPC Linear Predictive Coding

LPF Low Pass Filter

LZW Lempel-Ziv-Welch algorithm

M

MAPS Micro-adaptive Picture Sequencing

MC Motion Compensation

MC/2D-DCT Motion Compensation/Two-Dimensional Transform

MNVC Minimum Noise Visibility Coding

MSE Mean Square Error

N

NMSE Normalized Mean Square Error

NTSC National Television System Committee

o

O,/N, Oxygen/Nitrogen gas atmosphere

P

PAL Phase Alternation Line, color television system designed by
Telefunken

PCAQ Predictive Constant Area Quantization

PCM Pulse Code Modulation

PE Processing Element

Pixel Picture Element

PROM Pockel's Readout Optical Modulator

PRN Pseudo-Random Noise

PSC Perceptual Space Coding

R

RAM Random Access Memory

RGB Red Green Blue, a common digital color coordinate system



RLC Run-length Coding
RS 170 Electronic Industries Association performance standards for
monochrome display systems; RS 170A applies to color displays.

S

SNR Signal-to-Noise Ratio

SQ Scalar Quantization

SS Space Station

SSKF Space Station Freedom

T

TDRSS Tracking and Data Relay Satellite System
2-D Two-dimensions

3-D Three-dimensions

\ 4

vDC Video Data Compression

VLSI Very Large Scale Integrated circuits
vQ Vector Quantization

w

WHT Walsh-Hadamard Transform

X

XFORM Transform

Y

YIQ A color coordinate system employed in broadcast television:
The Y-component is luminance, The I- and Q-components are
chrominance.



UNITS

This list contains abbreviations for units of measure used throughout this report.

B
b

bpp
Byte/p

<m

dB

fr/s
fsc

GB
Gp

hr
lines/mm
Mbps
MHz
min
Mp/s

ns

p/fr

byte

bit

bits per pixel
Bytes per pixel
centimeter
decibel

frames per second
frequency of subcarrier

Gigabytes (10° bytes)
Gigapixels (10° pixels)

hour

lines per millimeter, a measure of optical resolution
Megabits (10° bits)

Megabits per second (10° bits/sec)

Megahertz (10° cycle per second)

minute

Megapixels per second (10° pixels/sec)

nanosecond (10° seconds)

pixels per frame

second



COMPRESSION TECHNIQUES

Introduction

The performance of each of the video data compression techniques presented here
is very much dependent upon the statistics of the image data. Some of the relevant
statistics include the entropy of the data within a frame, the correlation of picture
elements (pixels) within and/or between frames, and the amount of detail and/or motion
contained in a frame.

Performance Results

In this report we will include some of the experimental results from computer
simulations of various techniques being applied to actual images. These results,
including bit rates, compression ratios, error measurements, and image quality
judgments, are simply the data collected from a small number of experiments
performed with specific images. Many of the images are from standard, RS 170
television signals. For the images in microgravity experiments, these results may
differ greatly. Also, the results of these techniques are expected to change with
increased image resolution. The Baseline HHVT system employs a camera with
resolution greater than RS 170 images. Even if the results are found to be similar,
the images to be produced from the various microgravity experiments are extremely
dissimilar in content to both broadcast television and aerial reconnaissance images
which are commonly used for simulations. Therefore, the performance data of the
image compression techniques we will present may not be indicative of their
performance in the context of an HHVT system.

Evaluation Criteria

The reproduced images from the simulations of codecs are usually evaluated
either on an objective (i.e. minimum error) basis or for subjective image appearance.
Some of the objective error measures are

S0, y) =iy (x, )1
MSE == e

MSE

:2

Lmax

SNR = 1010gw(m1—sg),

where i, is the reconstructed intensity value, i, is the original intensity value, and i,

is the maximum possible intensity value, and N is the number of picture elements
(pixels) in the image.

For microgravity experiment applications, the interest is usually in obtaining
measurements of specific physical quantities from the reconstructed data. Therefore,
the evaluation criteria may be very different.

NMSE =

i



Spectral Information

Nassau [1] gives three uses for the word "color”. For the purposes of this report,
we mean "a class of sensations” produced by the human visual system (HVS). An
image can appear to the HVS to have colors that are identical to the real scene being
imaged even though the actual spectral composition of the reproduced image may be
very different from that of the actual light incident on the sensor(s). Apparently, this
is possible because the human eye has only three types of color sensors (cones) each
of which responds to red, green, or blue light, with some overlap in the spectral
sensitivities. Therefore, the color information available to higher levels of the HVS
consists solely of three scalar values. This is not enough information to uniquely
determine the spectral distribution of the incident light. A specific combination of
sensor outputs produces a specific color sensation regardless of the spectral
distribution of the light that caused the sensor responses.

This phenomenon of the HVSis the basis of the standard RGB system of producing
color television pictures. Most of the colors that can be perceived by the HVS can be
produced by a combination of the proper proportions of red, green, and blue
monochromaticlight. The reproduced colors will match the originals well if the spectral
responses of the camera sensors closely approximate the spectral responses of the
cones in the human eye. The match does not have to be exact since the HVS has a
perception threshold for the discrimination of color. Two RGB signals that differ by
amounts under the threshold will produce the same color. The threshold is notidentical
for the three components of the signal. It is also dependent on the color.

An experimenter may be more concerned with the spectral distribution of the
light source or the surface spectral reflection of the objects being imaged than in the
color perceived by a human observer. Ingeneral, itis not possible to uniquely determine
this information using a finite number of sensors and/or filters with different spectral
responses. If the interest is only in a finite number of discrete frequencies, the
intensities can be uniquely determined from an equal number of sensors.

Wandell [2] describes a method for extracting spectral information from a
multi-spectral video signal consisting of the outputs of a finite number of sensors. This
method approximates the spectral curve (intensity vs. frequency or intensity vs.
wavelength) by using basis functions. The number of basis functions that can be used
is less than, or possibly equal to, the number of sensors. This method will provide a
reasonable approximation to the curve only if the variation of intensity with
wavelength is slow (low-pass) or if some information about the shape of the curve is
known so that appropriate basis functions can be used.

Because the relationships among the color signals received from the sensors, the
spectral information they represent, and the perceptions of the HVS are so complex;
an analysis of the effects of data compression techniques on spectral information is
very difficult. Any analysis would have to consider the responses of each of the sensors
and the type of spectral information to be determined in addition to the type and
magnitude of the errors introduced by a specific data compression technique.



When the information to be derived from the color signal consists solely of HVS
perception, significant compression can be achieved by separating the signal into
luminance and chrominance components and sampling the chrominance signals at a
lower spatial frequency. This has little effect on the perceived colors. Most likely, this
is because the HVS performs some similar operation before interpreting the color
information. If other types of spectral mformatlon are needed, this type of compression
will not be acceptable. o S

The results reported in the literature on co;!lplesglon of color i 1mages usually
involve images for television. In typical color television pictures, the illumination is
broad-band across the visual spectrum. Therefore, there is some statistical redundancy
between the three color components. For some of the planned microgravity
experiments, particularly the self-illuminating ones, this may be far from true.

1 Nasgggé K., The Physics and Chemistry of Color, Wiley-Interscience Publication, pp. 3 and 13,

2. Wandell, B., "The Synthesis and Analysis of Color Images,” IEEE Transactions on Pattern
Anaiyszs and Machine Intelligence, vol. PAMI-9, pp. 2-13, Jan. 1987.



Overview of Compression Technique Performance

For all of the reasons mentioned above, the results of various compression
techniques reportedin the literature mayhavelittle applicability to HHVT. If areliable
and accurate analysis of the effects of errors on the information contained in the image
is to be performed, it will have to be done for specific types of images from experiments
once the specifications of the sensors and the content of the images are known. A
general evaluation of the effects of a data compression technique on HHVT images
would have limited value. The results reported in the literature are presented here

only to provide a basis for further analysis.

PERFORMANCE OF COMPRESSION TEC

COMPRESSION
TECHNIQUES

COMPRESSION
bits per pixel

REVERSIBLE METHODS

1. Run-Length Coding

This compression 1s poltlg),b with low detail
) at 8 bpp.
This compression is possible with typical
television images.
This compreasion is possible with high detail
images.

2. Contour Coding

This techniqua 1s most effective when used with
two-tone, line drawinge.

8. Huffman Coding

This technique is most often used in addition to
losty, entropy reducing methods.

4. Arithmetic Coding

Techniques performance is similar to Huffman
Coding

6. Conditional Replenishment

:ﬂp‘:‘d:mmmimorlmuu

Reversible col:})rulion ratios depend on
amount of motion or background change in

{image.
This compression ylelds lossy compression with
good quality reconstructed images.

8. Bit-plane Encoding

This method offers additional improvements
over previous methods, especially when
using gray codes.

| PREDICTIVE METHODS

1. Linear Predictive Coding depends on image entropy;

Serence signal

Prediction is function of image’s statistics.

highly susceptible to
transmission errors
highly susceptible to

transmission errors

i 2. Differential Pulse Code Modulation
(DPCM)

This compression is possible using non-adaptive
Thi wﬁnﬂo i sible using adapti:
s compresxion is o ve
quantization. pos

i 3. Delta Modulation

highly dependent on
quantization; susceptible

Analog input signal simplifies implementation,
but must be sampled at rate higher than
Ny t;t rate. Marginally acceptable

[l 4. Motion Compensation (MC)

Average compression for good quality pictures.

[+ Data not available in literature reviewed

This table continues on the following page.



PERFORMANCE OF COMPRESSION TECHNIQUES

COMPRESSION COMPRESSION COMMENTS
CHNI S bits per pixel

BLOCK METHODS

I 1. Vector Quantization (VQ 05-08 This compression is possible using
16-20 0.1 This compression is poasible using color imeg
0.1-02 1 This compression in possible with a motion
eompensation technique. This bpp holds
true if motion is <20% in the image.
‘ 2. Vector DPCM 0.5 ¥ This :;umpmdon is achieved using monochrome
mages.
0.76-1.08 - 4 This t;om;‘»::ulon in achisved using color
In m tor DPCM bette
| Nyt k v
N 3. Block Truncation Coding 1.626 t This linmpmdon is achieved using monochrome
218 t This wmpr:llion is achieved using color
0.9 1 This c;?mdou isachieved using interframe
; : — 08
| 4. Variable Resclution Coding
MAPS uren 0.583 052
02-8.0 Dependi th t of detail, thi thod
TFreo oding ! P can bo reversible, '
HVS COMPENSATION
1 thetic Hi Amount of ssion depend threshold
Synthetic Highs * ! * values and dosired image quality.
2. Pyy}mid Coding 0.7-186 <L0 Quantization errors occur at high frequencies.
3. Growh b This technique does not yield ults f
Region Growing t * small ?Ogj.dl or detyniﬁn irﬁor‘ilgl;:xl ’u;:;e.
4. Directional Decom position € t This compression was achieved uring 8 bit
d 1 At this eomp‘ this
o . blurred but still tmgninhle imnpl
5. Ani ic Nonstationary This techr does not handle fine text: t
”P‘mi:ﬁv?Codin‘ ° ' ' high egl‘:epmMon rates. enne ured
t Data not available in literature reviewed
} Square error <18
| + Square error < 200
| Compression ratios depend on number of bits used to encode original and reconstructed images:
| 4:1to23:1
| ®30:1
i :60: 1
,* 90:1 to 200:1
| *20:1t030:1

This table contmues on the followmg page.
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PERFORMANCE OF COMPRESSION TECHNIQUES

COMPRESSION COMPRESSION ERRORS COMMENTS
TECHNIQUES bits per glxel %MSE
HVS COMPENSATION (CONTINUED)

6. Minimum Noise Visibility Coding 45 b This compresasion was achieved using
monochrome images.

58 b4 This compression was achieved using color
images.

7. Conetant Area Quantization (CAQ) 1.08 3.0

12 <20 This hieved by ducing
evw-hoot lnto tho method.
10-1.8 15-10 This eom&rul!on was achieved using predictive

8. Perceptual Space Coding - 0.1 0.72 Alow detail, monochrome image wus encoded

P romlting in usable qullit‘y‘mpmducﬁom
0.26 0.36 - 3.30 A number of color images of varying detall were
ancoded resulting in excellent quality
reproductionn.
TRANSFORM CODING
1. Karhunen-Loeve (KLT) 065-1.0 16-05 For widest nng'ul im:fu this transform
t res but it lacks fast
unplemenution.

2, Discrete Cosine (DCT) 05-1.0 0.75-0.2 Using adaptive techrmiques, DCT orms

ﬂ t'.loug-i to KLT perk u

8. Slant 10-16 <10

05 Using adaptive techni this transform
ne rfo':-‘nfl nlmulz\:‘;eﬂ au DCT and much
ter than Hadamard and Haar.

4. Hadamard 10-18 15-10 Classie, straightforward hardware
implementation exists for this transform;
however with VLS, it is being replaced by
better performing DCT.

5. Haar 0.7-17 08-0.2 With adaptive quantization, this transform has
better ormance than Hadamard; but it
is alno being replaced by DCT.

HYBRID METHODS
1.DCT/VQ 0.7-08 had This level of eompreldon dxd not reeult in high
quality reconstructed
11 - At this compression, teeomtmlr.s:d
contained no visible distortion.
I 2. DCT/MC 0.1-04 t This performance uses adaptive DCT.

** 1-2 db higher sig

1‘ Data not available in literature reviewed
* Quantization errors at high frequencies
al to-nmse ratio than DCT alone
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Reversible Image Compression

Image compression schemes are said to be reversible, or information- lossless, if
the original digital representation of the image can be fully reconstructed at the
receiver from the compressed data. Compression can be achieved without any loss of
information only if the digital representation contains redundancies. This is usually
the case for digital video images. The measure of the amount of information contained
in a set of data indicates the entropy of the information source producing the data.

In order to define the entropy, we must first define the source. A source has an
alphabet of symbols that it can produce, as well as a set of probabilities for the
production of each symbol in the alphabet. If the probability of occurrence of each
symbol is independent of all other symbols, the entropy (bits/symbol) is defined as

H(S)=— X [P;log,(P)}

i=1

where P, is the probability of symbol i occurring. This is known as the zeroth-order

entropy.

It is also possible to have a source where the probabilities of the production of a
given symbol depend on m previously produced symbols. Thisis known as anmth-order
Markov source. The entropy for this source (sometimes known as a conditional entropy)
i8

H(S)=-2IP(s;,.-,5;,,5) 108 P(s; 1S, 5.0, 5,)]

where the sum is taken over all n members of the symbol alphabet for each of the m
symbols obtained from the source, i. ., nm terms. This entropy will be not greater
than the zeroth-order entropy, with equality only if the symbols are independent.
For a digital video image, the symbols are the intensity values at the pixels. The
alphabet depends on the quantization. For eight- bit PCM quantization there are 256
symbols. The entropy is generally stated in bits per pixel (bpp). In general, the values
at nearby pixels are highly correlated. Therefore, a lower entropy is obtained, since
the image can be represented as the output of a low-order Markov source.
Some reversible image compression schemes are
1) Run-length Coding
2) Contour Coding
3) Huffman Coding
4) Arithmetic Coding
5) Conditional Replenishment
All of these reversible techniques will, in general, produce output at a variable
rate. In order to transmit at a constant rate, a (large) buffer will be required in the
transmitter. With today’s memory technology, this does not represent a problem.

12

I

Bl



Run-length Coding

Very often, large regions of an image are relatively uniform in intensity and/or
color. This can be used to our advantage by replacing long strings of identical pixels
with short strings containing the intensity (once) and the number of repetitions. One
problem with the practical implementation of this scheme is how to allow the receiver
to distinguish between intensity codes and repetition codes. There are two different
ways of solving this problem. One method is to divide all of the pixels into runs (of
length 1 or more) and to include a length code between every intensity code. A second
method involves reserving one value for an escape code to signal the start of a run.
The advantage of the latter method is that the worst case scenario will result in no
compression, whereas for the first method the number of bits per pixel could be
increased. The cost of the second method is the number of intensity values possible
for a given number of bits is reduced by one. If the second method is applied to an
image which was quantized using the full scale of values, the compression will not be
reversible [3][4].

Compression

Usually, the number of bits used to encode the length of a single run is constant.
Therefore, there is a maximum run length, m, that can be encoded, with longer runs
being divided into multiple runs. The length of each run depends on the correlation
between each pixel and the m previous pixels. The achievable compression is therefore
limited by the entropy of the image when it is modelled as the output of an mth-order
Markov source. However, there is no guarantee that run-length coding (RLC) will
approach this limit. Low detail images may be encoded at about 1.5 - 2.0 bpp for an
8-bit original. Typical television images will require about 3.5 bpp. High detail images
could require up to 16 bpp if the first method discussed above is used.

Contour Coding

If the image to be compressed is a two-level (binary) image, the entire image can
be reconstructed from knowledge of the contours that define the boundaries between
the regions. Therefore, binary images can be encoded at low bit rates by transmitting
only the pixels that are part of the contours [5]. More savings can be achieved by
dividing the contours into line segments and assigning each segment a code [6]. These
techniques can also be applied to multilevel images by including either an intensity
value for each area or gradient values along the contours.

Compression

The compression depends on the number of contours in the image. This technique
is most effective for line drawings which are mostly background. It is also used when
coding coefficients in transform coding.

13



Huffman Coding

In an entropy encoding scheme the amount of compression achievable is limited
by the entropy of the data. Huffman coding [7] is such an entropy encoding scheme.
It takes advantage of the non-uniform distribution of the occurrences of pixel
intensities, regardless of position in the image. (If the distribution is uniform across
all possible values, the bit rate is equal to the entropy already, and no compression
will be achieved.) The technique involves assigning a code to each intensity value with
the shorter codes gomg to the more probable events. The compression limit given by
the entropy of the i image is almost achieved. If the probablhty distribution is known
in advance, the receiver can store the codes. However, in many cases the codes must
be generated based on the actual statistics of the image. In this case, the codes must
be transmitted as overhead information. For large images, the overhead will not be

significant.

Compresswn

The bit rate is limited by the zeroth-order entropy of the image. Huffman coding
will achieve bit rates very close to this limit for large numbers of pixels. The
zeroth-order entropy for 8-bit video images is often about 7.5 bpp, so Huffman coding
is most often used in combination with a lossy, entropy-reducing compression
technique.

Arithmetic Coding

Another entropy encoding scheme is Arithmetic coding [8][9][10]. In this
technique the interval from zero to one (including zero, excluding one) is divided
according to the probabilities of the occurrences of the intensities. Each subinterval
is assigned a code representing a fractional value that it contains. The division process
can be repeated many times by insuring that the boundaries are rational values and
storing the numerator and denominator as integers. Therefore, long codes can be
produced for long strings of pixels. As with Huffman Coding, shorter codes are assigned
to more probable strings. The possibility of stringing together pixels when encoding
allows the coding rate to approach the entropy of the image even more closely than
Huffman codes which must assign an integral number of bits to the code of each pixel.
The codebook is not transmitted, but the decodmg is done through knowledge of the
probabilities of the intensity levels.

Compression
Similar to Huffman coding. (See above)
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Conditional Replenishment

When there is very little motion in a sequence of video frames, there will be high
correlation between individual pixels of adjacent frames. Much compression can be
achieved by only transmitting the locations and intensity values of those pixels that
changed since the previous frame. The receiver saves the previous frame and
replenishes the changed pixels with their new values. The amount of compression
that can be achieved depends on the correlation between frames. If the replenished
pixels appear in runs, the overhead information could be reduced by transmitting a
starting address and a run length instead of a location for each pixel. Much greater
compression can be achieved by using conditional replenishment as a non-reversible
technique. This is accomplished by not transmitting any pixel whose value is "close”
to that of the previous frame [11][12][13].

Compression

Lossy conditional replenishment (CR) can obtain bit rates aslow as 1.0 bpp with
good quality. Reversible compression ratios depend on the amount of motion or
background change in the specific scene.

Bit-plane Encoding

Some of the lossless compression techniques we have discussed, specifically
run-length coding, and contour coding can be used more effectively if they are applied
to each bit-plane separately. This can be done by using the binary representation of
the pixel intensity values of the image. The most significant bit at each pixel is treated
as a binary image. The compression scheme is applied to this image. Each of the
remaining bits is treated likewise. At the receiver each bit-plane is decoded, and the
bit-planes are combined to reconstruct the image. This scheme will often provide the
possibility of more compression since the more significant bit-planes will have large
uniform areas which can be greatly compressed [14].

Ifbit-plane coding is to be used, the amount of achievable compression can usually
be increased by replacing the standard binary representation of the intensity values
with a gray code. The gray code reorders the binary symbols such that consecutive
symbols differ by exactly one bit. Since real images often have consecutive intensity
values at adjacent pixels, using the gray code can increase the size of uniform regions.
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Predictive Methods

Differential Pulse Code Modulation

Predictive methods involve predicting the intensity value at a given pixel based
on the values of previously processed pixels. Usually, the difference between the
predicted value and the actual valueis transmitted. This techniqueis generally known
as Differential Pulse Code Modulation (DPCM). The receiver makes the same
prediction as the transmitter and then adds the difference signal to it in order to
reconstruct the original value. A predictive method usually involves three
steps: prediction, quantization, and coding. These functions are shown in Figure 1.

111
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000
100
110
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input x d X dq 010 110 000 ...
>? p»!  QUANTIZER -
+
+
x

PREDICTOR

>

Figure 1: Differential Pulse Code Modulation encoder

The difference, d, is obtained by subtracting £, the prediction, from the input x. The
difference signal, d, is quantized as shown and the signal d, is transmitted. The
quantized input to the predictor, x,, is obtained by combining £ with d,, as shown.
Various reversible coding techniques, discussed in Reversible Image
Compression, can be applied to the quantized difference signal as presented.
Therefore, only prediction and quantization will be covered in this section.
Predictive methods can be applied in one or two dimensions within a frame and/or

on a frame-to-frame basis. The methods can either be fixed or adaptive. Adaptivity
can be included in the prediction and/or in the quantization.
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Prediction:

In the prediction step we try to predict the intensity value at the current pixel
asclosely as possible. Thisis done to take advantage of the correlation existing between
pixels in a region. If the correlation is high, the predictions will usually be fairly close
to the actual values. Therefore, most of the differences will be of low absolute value,
and the zeroth-order entropy of the difference signal will be lower than that of the
original signal.

The simplest prediction methods use the value at the previous pixel as the
predicted value. Somewhat better results can be obtained by using a linear
combination of n previous pixels. Better prediction can also be achieved by using
two-dimensional prediction. This is usually done by using a linear combination of the
previous pixel and adjacent pixels from the previous row. The optimal coefficients of
the linear combinations can be derived from the statistics of the image. They can be

computed separately for each small region of the image. In this case the coefficients
must be sent to the receiver along with the difference signal [15][16].

Another possibility, used in 2-D, is to choose a small number of combinations of
coefficients [17][18]. For each pixel the prediction is made using each of these
combinations. The best prediction is chosen, and a code is sent to the receiver to
indicate which combination was used. Making the predictions in this way is especially
effective when the image contains sharp edges with arbitrary orientations.

Li Predictive Coding:

The technique known as Linear Predictive Coding (LPC)[19][20][21] is commonly
used for speech compression. It is essentially an adaptive nth-order predictive method
as described above. When LPC is used for speech compression, the difference signal
does not need to be transmitted since it can be approximated by either white noise or
a periodic pulse train. These can be generated at the receiver and applied to the
appropriate prediction algorithm. This tremendous advantage does not exist, in
general, for video images. Therefore, just as with other predictive techniques, the
difference signal must be transmitted. Even so, LPC is an effective technique since
the prediction is adaptively optimized for the local statistics of the image.

Quantization:

To transmit the difference signal, it must first be quantized. If the difference
signal ig quantized to the same precision as the original signal, the process is reversible
as mentioned above. If the prediction is highly accurate, the entropy (information
content) of the full-precision difference signal will result mostly from the less
significant bits. This means using fewer bits to quantize the signal can significantly
reduce the entropy without too much reduction in image quality. If some reduction
in image quality is acceptable, much better compression can be obtained by reducing
the number of quantization levels, thereby reducing the number of bits required to
transmit the difference signal. The optimal distribution of the reduced number of
quantization levels depends on the statistics of the image and on the relative
significance to the user of various types of errors in the intensity values.

To keep the maximum error below a certain threshold, the levels will be
distributed uniformly over the possible values of the difference. To minimize the MSE,
the smaller magnitudes will be quantized with more values. The larger magnitudes
will be quantized with few values since they occur less frequently. Non-uniform
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quantization is also appropriate for minimal subjective degradation of the image since
the sensitivity of the human eye to small variations is much greater within smooth
regions than near sharp edges. The signal can also be quantized to preserve certain
statistical properties of the image [22].

Max [23] provided a method for determining the optimal distribution of
quantization levels for a given distortion criterion when the statistics of the signal are
known. He also provided solutions for 1 to 36 quantization levels which will minimize
the MSE for a normal distribution. The Max quantizer has been widely used in both
predictive and transform compression schemes.

Quantization is implemented adaptively for a variety of purposes. These include
better handling of sharp intensity gradations without sacrificing good quality in
smooth regions [24]. Also, adaptive quantization adjusts to local statistics to reduce
the local error, as well as insuring a more uniform output bit rate when entropy
encoding is used on the difference signal. The adaptivity can be implemented either
by changing the placement of quantization levels or by switching between quantizers
using different numbers of levels.

One difficulty encountered with DPCM is that errors in transmission will
propagate through the image because predictions at the receiver will not be identical
to those at the transmitter. A common solution to this problem is to reduce the
magnitude of the predicted value by a few percent before calculating the difference
signal. This is known as introducing "leak"” into the prediction. It will cause the effect
of the error to diminish from pixel to pixel, thereby confining the effects to a small
region.

Aside from transmission errors, the information which is lost in using a predictive
method results from the quantization error. The quality of the prediction affects the
error only indirectly in the sense that a better prediction allows a finer quantization
of the differences at the same bit rate, resulting in a better quality reproduction of the
image. The number of quantization levels, as well as their placement can be adjusted
to match various error criteria.

Compression

Good quality images can be obtained at bit rates of 3 - 4 bpp for nonadaptive
DPCM and 2 - 3 bpp for adaptive DPCM [25]. Test pictures that were encoded with
3-bit adaptive DPCM had signal-to-noise ratios of over 40 dB [26]. There have been
claims of very good image quality at around 1 bpp [27]. The discrepancy may lie in
the subjective determination of "good" images. Color images were reproduced with no
perceptible degradation at a bit rate of 5 bits/sample where a composite PAL signal
was sampled at 3 times the subcarrier frequency (20% over the Nyquist rate) [28].

Spatial Domain

Most of the compression is achieved by taking advantage of the statistical
distribution of the differences (most of them will be small in magnitude) through the
use of coarse quantization. Using coarse quantization will result in quantization noise
that can cause distortion in the reconstructed image. This distortion can generally be
classified into three types: granular noise, slope overload, and edge busyness.
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Granular noise refers to small variations in intensity in regions where the
intensity should be constant. It results from not having enough quantization levels
for very small differences. Slope overload refers to errors resulting from not having a
large enough quantization level for the difference signal that occurs at a sharp edge.
This type of error will tend to blur the edges since it will take a few pixels for the

reconstructed image to "catch up” to the original image. It will also tend to shift the

‘edges "downstream” in the image since the predictions are causal which makes the
difference signal lag the original signal. Edge busyness can result from not having
enough middle-to-large quantization levels so that a continuous edge may appear
discontinuous between consecutive pixel rows.

The nature of the degradation of the image for a given bit rate can be controlled
by the distribution of the quantization levels. Placing more levels at smaller difference
values (reduce granularity) will improve the picture in regions of low detail at the cost
of large errors at sharp edges. Many adaptive quantization schemes are desxgned to
reduce the specific type of distortion that would be most critical in the local region.
Adaptive 2-D prediction schemes have also been developed for the purpose of predicting
along contours to reduce situations that would lead to slope overload and edge
busyness.

If the difference signal is subsequently entropy encoded, the amount of detail in
an image can affect the number of quantization levels available at a given bit rate. If
there is a great amount of detail in the image, a significant number of the differences
will be large. This will raise the entropy of the difference signal, and, therefore, less
compression will be possible for a given number of quantization levels.

Temporal Domain —
Temporal effects will only be of interest for interframe DPCM (See Motion

Compensation)

Aesthetic Appearance

The appearance of the reconstructed image depends on the amount and
distribution of the degradations mentioned above. The v131b1hty of each type of
degradation depends on its location in the image. Granular noise, for instance, is more
visible in constant intensity regions of large area than it is near edges.

One method that is used to reduce the visibility of quantization noise is to add
pseudo-random noise (PRN) before quantizing the difference signal. The same noise
is subtracted at the receiver. The effect of doing this is to break up any noticeable
patterns in the quantization errors.

Specitral Information

The distortions produced by encoding color images were generally similar to those
produced by using monochrome images.
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Delta Modulation

One technique, known as Delta Modulation (DM), involves quantizing the
difference signal with one bit, i. e., two levels, one positive and one negative. The
locations of the levels are usually determined adaptively in order to reasonably
represent both smooth regions and edges [29][30][31]. Figure 2 shows a block diagram

of a Delta Modulation encoder.
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Figure 2: Delta Modulation encoder

The DM encoder is similar to the DPCM encoder, where the quantizer uses two
levels. The effects of adaptively changing the quantizing levels are illustrated in the
two time plots in Figure 2, showing the response to a step change. In both plots the
effects of slope overload can be seen. However, in the right-hand plot, using adaptive
quantizing, the response arrives at the steady state level more rapidly.

An advantage of DM over other forms of DPCM is that it does not require a
digitizer. This makes it much simpler to implement if the input signal that the encoder
receives is in analog form.

Compression

Nonadaptive DM produces 1 bit per sample. However, in order to maintain
reasonable quality the analog signal must be sampled at a rate higher than the Nyquist
rate. When the input signal is digital, adaptive DM can be used to improve image

quality at a bit rate of 2 bpp. The image quality at a bit rate of 2 bpp is marginally
acceptable.
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Spatial Domain

The coarse quantization used in DM results in quantization noise that can cause
distortion in the reconstructed image. The distortion produces three types of noise
similar to DPCM: granular noise, slope overload, and edge busyness. Adaptive DM
will reduce the magnitude of these effects.

Temporal Domain o
Temporal effects will only be of interest for interframe DPCM. (See Motion

Compensation)

Aesthetic Appearance

DM is susceptible to transmission errors. The errors result in streaks, where the
duration of the streaks is an exponential function of the leak introduced in the
transmitter. Edge delay, edge wiggle and edge busyness are distortions characteristic
of DM. The magnitude of these distortions increase with increasing compression.

Spectral Information
The distortions produced by encoding color images were generally similar to those
produced by using monochrome images.

Motion Compensation

Motion compensation (MC)is a popular technique for improving interframe
prediction. It can be used in combination with one of many intraframe compression
methods. :

There are two general categories of MC techniques: pixel recursive algorithms
and block matching algorithms [32]. In both of these techniques, the predictor uses
the intensity value of a pixel in the previous frame which may be displaced spatially
from the current pixel in order to compensate for the motion of the physical objects
being depicted intheimage. The goal of the algorithm is to find the spatial displacement
that gives the best prediction.

Pixel recursive algorithms update, at each pixel, the spatial displacement that
is used in the prediction. The update is based on the difference value at the previous
pixel of the current frame [33][34].

Block matching algorithms compare small blocks of pixels in the new frame to
displaced blocks in the previous frame, as shown in Figure 3.
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Figure 3: Motion Compensation block search

The spatial displacement which gives the best match is used in the pixel-by-pixel
prediction. Since most frame-to-frame displacements due to motion are of small
magnitude, regions of the image containing motion can usually be predicted accurately
by a MC technique with a reasonable number of calculations. Ifnone of the comparisons
result in a sufficiently good match, intraframe coding is used on the current block.

Compression

Motion compensated prediction can produce good quality pictures at an average
rate of 1.5 bpp.

Spatial Domain
Granular noise in the region near edges of moving patterns is, in general,
attributable to the use of MC.

Temporal Domain :

Holding the output bit rate of an interframe predictive method, such as MC, at
a given level could produce very low quality images when the amount of motion is high.
In general, however, these techniques are designed to produce an output bit rate that
is variable and depends on the amount of motion in the image. The quality of the
image is maintained at or above a given level. The entropy of the difference signal for
interframe methods will clearly be lower for sequences with less activity since the
frame-to-frame predictions will be more accurate.

23



Aesthetic Appearance

Motion compensated predictive methods attempt to predict image intensities
accurately when there is some motion in a region. They will only be able to do so for
slowly moving objects. In effect, they consider low-motion regions to be stationary,
thereby increasing the fraction of the image that is stationary and reducing the bit
rate. Just as interframe DPCM, moving edges result in large prediction differences,
in turn resulting in slope overload. The aesthetic appearance however, is distributed
from frame to frame. A scene change will be treated as high-speed motion
(unpredictable) over most of the image.

Spectral Information

The distortions produced by encoding color images were generally similar to those
produced by using monochrome images. Chrominance noise appears in the region of
moving edges.
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Block Methods

Vector Quantization

Vector Quantization (VQ) [35][361[37], which is also called block quantization or
block source coding, uses a block of intensity values, treated as a vector. The block
size is usually 4 x 4 since it is difficult to design a good representative codebook for
larger blocks [38]. The vector is compared to a codebook of vectors and the code for
the "closest” (minimizing some measure of distortion) match is transmitted. This
process is illustrated in the figure below using a block of 3 x 3 pixels.

INPUT BEST OUTPUT
—— ——
] MATCH
3x3 PIXELS 4

.

10x9 BLOCKS

I
1}
It

| gt

CODEBOOK

Figure 4: A Vector Quantization encoder using a block of 3 x 3 pixels

It is the choice of the size and contents of the codebook that requires some
ingenuity. The distortion measure, used for both the design of the codebook and for
the comparisons during encoding of the image, should quantify the most critical type
of distortion for the end user. The vector quantizer will then minimize this distortion
measure [39].

The codebook consists of a small subset of all the possible vectors of intensity
values. It is produced from the probability distribution of the image. Still more likely
if the statistics of the image are not known a priori, the codebook is made from a string
oftraining vectors which are assumed to be representative of the data to be transmitted.
In the latter case, training vectors will produce less distortion if they are taken from
the image itself. However, this requires an adaptive implementation involving the
production and transmission of a new codebook for each image. A goal of the design
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of vector quantizers is to design codebooks that are universal without being too large.
A large codebook, while reducing distortion, also reduces the effectiveness of VQ in
two ways. First, the bit rate is higher since the number of bits required for each
codeword is log,(N) where N is the number of codevectors. Second, the time required
to search the codebook increases rapidly with its size.

In order to reduce the size of the codebook for a given distortion level, the mean
and standard deviation are removed from each block and transmitted separately [40].
Another method that reduces the bit rate without increasing the distortion is called
an Address-Vector Quantizer (A-VQ) [41]. For this method the codebook is divided
into two parts. Most of the codevectors contain the codes (addresses) of four standard
codevectors. To encode an image, each 4 x 4 block is vector quantized using the
standard codevectors. Then the blocks are combined into groups of four. If the four
codes match those contained in the address-codebook, this one code is substituted for
the four standard codes. Otherwise, the four codes are transmitted as usual. In this
way A-VQ can reduce the bit rate nearly 50% with no reduction in image quality.

Other methods have been developed to improve the subjective image quality for
a given codebook size by segmenting the codebook and assigning more codevectors to
"edge" vectors since the accurate reproduction of edges is necessary for good quality
images.

VQ canbe used for multi-spectral images by treating the multiple intensity values
at each pixel as a vector. The spatial and spectral aspects of a color image can also be
combined into a single vector [42].

Compression

Straightforward implementations of VQ (segmented codebook or mean
subtraction) can produce good quality images at rates of 0.5 - 0.8 bpp for monochrome
images and 1.5 - 2.0 bpp for color images. A motion compensated technique has been
developed [43] that produces colorimages at 0.1 - 0.2 bpp if the motion covers less than
20% of the image.

Spatial Domain

The objective errors resulting from VQ depend on the distortion measure that is
used. If the acceptable and unacceptable types of distortion can be quantified, a
codebook can, in theory, be produced to meet these criteria. In practice, algorithms
for producing vector codebooks have only been developed for a few distortion measures.
The MSE is about 0.1% for standard VQ.

Temporal Domain
Not Applicable.

Aesthetic Appearance

MSE does not accurately represent the perceived image quality. This can be seen
at sharp edges where a "staircase effect” is produced by standard VQ [44]. The
degradation of these edges does not significantly increase the MSE, but it does decrease
the perceived quality. The number of possible edge orientations are too large to be
include all the respective "edge" vectors in a code set. Therefore edges are degraded.
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Another less significant effect which can occur is some blocking in smooth areas
[45]. The techniques mentioned above which transmit the mean separately should
eliminate most of this problem.

Spectral Information
The reports of using VQ for color images did not include an analysis of the effects

on spectral information.

Vector DPCM

Vector DPCM [46] performs prediction on a block by block basis. The intensities
at all the pixels in a block are predicted based on the intensities at the pixels adjacent
to the left and upper borders of the block (the nearest pixels that have already been
transmitted). The differences at all the pixels in the block are coded by vector
quantization.

Compression

Very good reproduced images were obtained at 0.5 bpp for monochrome images
and 0.75 - 1.08 bpp for color images with sub-sampling of the chrominance signals.
The square error per pixel for these images were less than 18 for monochrome and
less than 200 for color.

The distortions produced by this method are similar to those produced by VQ.
In general, Vector DPCM produces better results than VQ at the same bit rate.

Block Truncation Coding

Block Truncation Coding (BTC) [47][48] divides the image to be coded into blocks.
The block size is usually 3 x 3 or 4 x 4 pixels. Within each block a threshold is chosen,
and the value at each pixel is coded as a 0 or 1 depending on whether it is above or
below the threshold. To decode the image, a high value is assigned to each pixel that
has a 1, and a low value is assigned to the others. The most common techniques
attempt to preserve the mean and variance of each block. They choose the mean as
the threshold value. The low, a, and high, b, values at the decoder are computed as
follows:

where 1 is the mean and ¢ is the standard deviation. m is the total number of pixels

in the block and ¢ is the number of pixels whose value is greater than the threshold.

Interframe BTC can be implemented on 4 x4 x 3 blocks of pixels if motion
compensation is included. Whenever the motion is too great, the algorithm switches
to 2-D BTC [49].
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BTC lends itself very nicely to parallel processing since the coding of each of the
blocks is totally independent. Some parallel algorithms have been developed [50].

Compression

Using 4 x 4 blocks will produce a bit rate of 1.625 bpp for a monochrome image,
assuming that the mean and standard deviation together are transmitted with 10 bits.
NTSC color images can be transmitted at 2.13 bpp by sub-sampling the I-component
at 2:1 and the Q-component at 4:1 and using BTC for each component independently
[51]. Interframe coding of 4 x 4 x 3 blocks can bring the bit rate down to 0.9 bpp.

Spatial Domain

Some of the reported distortion effects are edge raggedness and
misrepresentation of mid-range values [52]. BTC also tends to produce artifacts of
sharp, well-defined edges [53].

Temporal Domain
The motion appeared to be continuous and clear for the 3-D BTC.

Aesthetic Appearance

In addition to the distortions reported above, BTC tends to enhance edges at the
expense of secondary changes which are less perceptible. This is actually a subjective
improvement in the image [54]. In general the images appeared sharp at the
transmission rates reported above.

Spectral Information

When coding a color image, there are small areas that contain errors in the color.
This is due to different amounts of distortion in the three components. However, the
overall color quality is good.

Variable-Resolution Coding

" Variable-resolution coding includes methods which use local contrast to
adaptively vary the resolution of subareas. They do this by representing blocks of
pixels in low detail regions with one intensity value, usually the mean of the intensity
values in that block. We will discuss two variable-resolution coding techniques,
Micro-adaptive Picture Sequencing (MAPS) and Tree Coding. The two techniques can
be implemented to retain the same intensity information. They differ only in the
details of the compression algorithm and the overhead information. They both can be
implemented for reversible compression by requiring regions of identical intensity
values, rather than just low contrast.
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Micro-adaptive Picture Sequencing

The MAPS [55][56] algorithm starts with the lowest level block, which is usually
individual pixels, and attempts to replace four blocks at a given level with a block at
the next level. If the contrasts among the four lower level blocks in the appropriate
locations are below the contrast thresholds, the lower level blocks are combined into
one larger block. MAPS includes an ordering of blocks where every lower level block
of a level n block is completely covered before the next block of the same level is begun.

Practically, this means the position of the blocks of different sizes can be determined
implicitly from the sizes of the blocks. The overhead information, therefore, includes
only one number for each block to indicate its level. Normally, this number will be 2
or 3 bits since the case of blocks larger than 128 x 128 pixels is unlikely to occur. Using
only two bits will result in lower overhead, but will limit the block size to 8 x 8.

Tree Coding

Tree coding [57][58] starts with the entire image. The image is divided into
square subregions. Any subregion having low contrast is encoded with a single
intensity value. A subregion having high contrast is divided further. This process is
repeated down to the level of individual pixels. By processing the image in this fashion,
the intensity information is contained in a tree data structure. Uniform subregions
are leaf nodes of the tree, while sub-divided regions are interior nodes. In addition to
the intensity value of each region, information is transmitted to tell the receiver the
shape of the tree. For intraframe compression the tree is usually a quad-tree. This
means that each region is divided into four quadrants, and each interior node has four
nodes at the level beneath it. In this case, the overhead for tree structure information
is found to be about 14% on the average. For mterframe compresswn oct-trees, eight
quad-trees, are sometimes used. T

A disadvantage of these two methods of vanable-resolutlon coding is that the
possible positions of large blocks are fixed so that large uniform regions can be "missed"
if they are not located and/or oriented properly with respect to the subdivisions of the

image.

Compression

Tree coding generally achleves shghtly more compression than MAPS since the
overhead is lower (14% compared to 25-38%). The IEEE Facsimile Test Chart was
digitized at 2048 x 2048 pixels and compressed to 0.593 bpp using MAPS. The MSE
was 0.82%. At compressions of 0.5 - 2.0 bpp, MAPS produced MSE 25% to 50% lower
than fixed block coding in which blocks of pixels are replaced by the mean without
regard to contrast. If fine detail can be eliminated, some images can be encoded using
tree coding at less than 0.2 bpp. An image with low detail can be reversibly encoded
using tree coding at about 2 bpp, whereas a high detail image might need more than
9 bpp (higher than PCM).

Spatial Domain
Information is lost in the ﬁne detall of low contrast reglons The contrast
thresholds are adjusted globally and/or locally to ensure that any important detail is

retained.
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Temporal Domain
Not Applicable.

Aesthetic Appearance

The appropriateness of variable-resolution coding is based on the idea that "when
animageis viewed as a whole, fine detailis noticed only when it exhibits sharp contrast”
[59]. Therefore, the loss of detail should not be noticeable if the thresholds are chosen
properly. The only visible artifact is blockiness when large block sizes are used.

Spectral Information
Not Applicable.

35. Linde, Y., Buzo, A., and Gray, R.M., "An Algorithm for Vector Quantizer Design," IEEE
Transactions on Communications, vol. COM-28, pp. 84-94, January 1980.

36. Gersho, A. and Ramamurthi, B., "Tmage Coding Using Vector Quantization,” Proceedings of
ICASSP, pp. 428-431, 1982.

37. Goldberg, M., Boucher, P.R. and Shlien, S., "Image Compression Using Adaptive Vector
Quantization,” IEEE Transactions on Communications, vol. COM-34, pp. 180-187,
February 1986.

38. Ferég, Y. and Nasrabadi, N.M., "Address-VQ: An Adaptive VQ Scheme Using Interblock
orrelation,” SPIE Proceedings on Visual Communications and Image Processing ‘88,
vol. 1001, part 1, pp. 214-222, 1988,

39. Ramamurthi, B., Gersho, A., and Sekey, A., "Low-Rate Image Coding Using Vector
Quantization,' Conference Record ofy Globecom ‘83, pp. 184-187, 1983.

40, Murakami, T., Asai, K., and Itoh, A., "Vector Quantization of Color Images," Proceedings of
ICASSP 86, pp. 133-136, 1986.

41. Feng, Y. and Nasrabadi, N.M., "Address-VQ: An Adaptive VQ Scheme Using Interblock
Correlation," SPIE Proceedings on Visual Communications and Image Processing ‘88,
vol. 1001, part 1, pp. 214-222, 1988.

42. Goldberg, M., Boucher, P.R. and Shlien, S., "Image Compression Using Adaptive Vector
uantization," IEEE Transactions on Communications, vol. COM-34, pp. 180-187,
ebruary 1986.

43. Murakami, T., Asai, K., and Itoh, A., "Vector Quantization of Color Images,” Proceedings of
ICASSP 86, pp. 133-136, 1986.

44, Gersho, A. and Ramamurthi, B., "Image Coding Using Vector Quantization,” Proceedings of
ICASSP, pp. 428-431, 1982.

45. Lee, H.J. and Lee, D.T.L., "A Gain-Shape Vector Quantizer for Image Coding," Proceedings of
ICASSP 86, pp. 141-144, 1986.

46. Rutledge, C.W., "Vector DPCM: Vector Predictive Coding of Color Images,” pp. 1158-1164, 1986.

47. Delp, E. J. and Mitchell, O. R., "Image Comgression By Using Block Truncation Coding," IEEE
nsactions on Communications, vol. COM-27, pp. 1335-1342, September 1979.

48. Halverson, D. R., Griswold, and Wise, "A Generalized Block Truncation Coding Algorithm for
Imai%éompression," IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. ASSP-32, pp. 664-668, June 1984,

49. Healy, D.J. and Mitchell, O.R., "Digital Video Bandwidth Compression Using Block Truncation
Coding," IEEE Transactions on Communications, vol. COM-29, pp. 1809-1817, December 1981.

50. Siegel, L.J., et al., "Block Truncation Coding on PASM," Proceedings of the Ann Allerton
‘onference on CCC, pp. 891-900, 1982.

51. Lema, M.D. and Mitchell, O.R., 'Absolute Moment BTC and Its Application to Color Images,"
IEEE Transactions on Communications, vol. COM-32, pp. 1148-1157, October 1984.

31



52. Lema, M.D. and Mitchell, O.R., "Absolute Moment BTC and Its Api)lication to Color Images,”
IEEE Transactions on Communications, vol. COM-32, pp. 1148-1157, October 1984.

53. Healy, D.J. and Mitchell, O.R., "Digital Video Bandwidth Compression Usinf Block Truncation
Coding,“ IEEE Transactions on Communications, vol. COM-29, pp. 1809-

54. Healy, D.J. and Mitchell, O.R., "Digital Video Bandwidth Compression Using Block Truncation

Coding," IEEE Transactions on Communications, vol. COM-29, pp. 1809-1817, December 1981.

55. LaBonte, A.E., "Two-Dimensional Image Coding by Micro-Adaptive Picture Sequencing,”
Proceedings of the SPIE, vol. 119, pp. 99-106, 1977. Adhlbaiee

56. LaBonte, A.E., "Micro-Adaptive Picture Sequencing in a Display Environment," Proceedings of
the SPIE, vol. 249, pp. 61-70, 1980.

67. Lansing, D.L., "Experiments in Encoding Multilevel Images as Quadtrees,” NASA Technical
Paper, no. 2722, 1987.

58. Farrelle, P.M. and Jain, A K,, "Quad-tree Based Two Source Image Coding," 1986.

59. LaBonte, A.E., "Two-Dimensional Image Coding by Micro-Adaptive Picture Sequencing,”
Proceedings of the SPIE, vol. 119, pp. 99-106, 1977. o

32

817, December 1981.

! [ |

"

(N} Lronn ] 1

(RN



Human Visual System Compensation

Human Visual System (HVS) compensation techniques attempt to compress
video images by eliminating any data not perceptible to the human visual system,
even if they are important from an information theory point of view. Some techniques
apply a model of the HVS directly to the image data. Many different models have been
developed to represent as many features of the HVS as possible. They generallyinclude
linear filters, as well as a non-linear element. Once a model has been chosen, a
compression technique can be developed that, when applied to the output of the model,
"loses" information that would be lost by the HVS anyway, e. g., high-frequency signals
that would be filtered out. At the receiver, the image is restored by applying theinverse
of the HVS model.

Other techniques involve taking advantage of specific characteristics of the HVS
without attempting to explicitly model it. When measured subjectively, the accurate
reproduction of edges is very important for the reproduction of images of high quality.
Therefore, one technique concentrates the transmitted data on the reproduction of
edges at the expense of other features. Such techniques should attain higher
compression while yielding better quality reconstructed images.

Many of the HVS compensation techniques involve extracting edge information
from the video signal. Many methods have been developed for this purpose. Some
involve separating the contour (high spatial frequency) portion of the video signal from
the texture (low spatial frequency) portion by linear filtering in the frequency domain.
Other techniques attempt to categorize each pixel as "edge" or "not edge". This
categorization are done either by applying local derivative operators and thresholding
the results or by matching small regions of the image to templates of standard edge
configurations. These techniques are generally difficult to investigate analytically,
and they are compared by the results they reproduce on test images. The application
of some of these methods to data compression are addressed in the discussion of the
compression techniques in this section.

A variety of HVS techniques are described here. It would seem many of these
techniques consist independent steps which can be mixed and matched carefully.
Specifically, the filtering and/or edge detection algorithms are somewhat
interchangeable between different techniques. This leads to the possibility of a
compression technique tailored to a specific application.

Synthetic Highs

The method of synthetic highs [60][61] involves the separation of the video signal
into two components, a low spatial-frequency component and an edge component. The
low-frequency component is extracted by a low-pass filter. This component can be
sampled at a lower rate than the original signal without loss of information. The edge
information is extracted by applying a differential operator to the original signal. The
result is compared to a threshold, and only the location and value of the “"important”
edge pixels are transmitted. This threshold comparison is the only information-lossy
process in this technique. At the receiver the low-frequency componentis interpolated
to the full resolution. A reconstruction filter is used to synthesize a high-frequency
signal from the edge information. The two components are then combined to
reconstruct the video image.
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Compression

The value of the threshold used for the edge detection provides a trade-off between
compression ratio and image quality. High quality images were obtained with
compression ratios ranging from 4 to 23 depending on the image.

Spatial Domain o |
The only information lost is the portion of the high-frequency signal below the
threshold. This can result in a loss of texture in the reconstructed image.

Temporal Domain
Not Applicable.

Aesthetic Appearance
The images appear sharp. However, some texture may be missing, as stated
above.

Spectral Information
Not Applicable.

Pyramid Coding

Pyramid coding [62] involves separating the video signal into multiple frequency
bands. Compression is achieved because the high-frequency signals have low entropy
and are encoded using fewer bits per pixel, and the low-frequency components are
transmitted using fewer pixels.

The HVSisless sensitive to contrast errors at high spatial frequencies. Therefore,
the highest-frequency components which contain the largest number of pixels can be
quantized with the least levels, thereby significantly reducing the entropy and the bit
rate. The lower frequency components require more bits per pixel, but the number of
pixels is s0 much smaller that the effect on the overall bit rate is insignificant.

The set of frequency band components is known as a pyramid because each band

contains fewer samples than the previous higher-frequency band. Each level of the
pyramid is extracted by low-pass filtering the image and subtracting the low-pass
component. The remainder is the current level of the pyramid, while the low-pass
component is used as the starting point for the next iteration in which the filter has
a lower cutoff frequency.

To produce the pyramid at high speed, the filtering results from convolution of
a weighting function with the image. (This is actually a non-causal form of prediction.)
The sample rate is reduced from level to level, typically by a factor of two in each
dimension.

Eachlevelis encoded independently. Significant compression usuallyis achieved
at the cost of loss of information by quantizing the components more coarsely than the
original signal. The number of quantization levels for each component are chosen so
as to have little effect on the subjective appearance of the image.
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At the receiver the low-pass components are interpolated back to full resolution
and all of the components are added together to reconstruct the image. This method
lends itself nicely to progressive transmission schemes since most of the transmitted
bits are for the high-frequency components, and a blurred version of the image can be
transmitted at a much lower bit rate.

Compression
Data rates from 0.7 to 1.6 bpp were reported with normalized MSE of less than
1%.

Spatial Domain

The only errors result from the quantization noise added to each frequency
component. The amount of noise in each frequency band is controlled by the number
of quantization levels used.

Temporal Domain
Not Applicable.

Aesthetic Appearance

Most of the quantization noise occurs in the high spatial frequency ranges where
the human visual system is less sensitive. Therefore, the subjective quality of the
reconstructed images is very high.

Spectral Information
Not Applicable.

Region Growing

Region growing techniques [63][64] also separate the contour information from
the texture information. The pixels of the image are first divided into regions. The
boundaries of the image are defined as contours. The contours and the texture
information are transmitted separately and combined at the receiver.

A region is defined by a property common to all the pixels within it. The ideal
property insures the boundaries of the regions correspond to physical boundaries of
the objects being imaged. In practice, however, this is not achievable. Instead, the
property is usually a range within which all the intensity values must lie.

The regions are grown by starting with one pixel and adding all surrounding
pixels having the correct property. When no more pixels can be added to a region, a
new region is started. This procedure continues until every pixel belongs to a region.
(Some of the regions may contain only one pixel.) The pixels on the boundary of a
region are treated as contour pixels. The image is processed to reduce the width of
the contours from two pixels to one by putting some of the contour pixels back into the
interior of the regions. To reduce the complexity, small regions are merged into larger
ones and regions which are similar along their common boundary can be combined.
These operations will most likely not eliminate contours having physical significance.
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The contours are coded using a contour coding scheme (see Contour Coding under
Reversible Image Compression). The remaining texture information is coded by
using an approximating function for each region. Since sharp discontinuities will not
appear within a region, low-order polynomials are usually reasonable approximations.

Compression

Good reproductions of an image can be obtained at a compression ratio of about
30:1. Higher compression can be achieved if the image is composed of a small number
of large regions of near-uniform intensity.

Spatial Domain
It is assumed that very small regions do not represent physical objects. If they
do, these small objects and/or fine details may be lost.

Temporal Domain
Not Applicable.

Aesthetic Appearance
The reconstructed picture has sharp edges and the proper texture. Degradation
will be obvious if the original image contained much fine detail which is subjectively

significant, e. g., facial features on people at a distance.

Spectral Information
Not Applicable.

Directional Decomposition

Directional Decomposition [65] is based on evidence the HVS contains direction
sensitive cells which extract features at specific orientations. Imitation of this
directional decomposition should not introduce large subjective errors. The
compression technique involves decomposing the image into a low-pass component
and N (typically 16) components which are high-pass in a specific direction and
low-pass in all the other directions. The decomposition is done in the 2-D Fourier
domain by multiplying the transform of the image with directional filter transfer
functions. Each component is then inverse transformed to the spatial domain.

As in the other techniques in this section, the low-pass component is
under-sampled and transmitted. The directional high-pass components are used for
edge detection. The edge detection is performed most effectively by producing an
isotropic high-pass image consisting of a combination of the directional components.
The pixels are compared to a threshold and selected to retain only the "important”
edges. Every edge pixel found in the isotropic image is then classified into one of the
directions based on a comparison of the form of the signal in the vicinity of that pixel
in each directional component.
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The edge information of each directional component is encoded independently.
The location of the edge points can be encoded by sub-sampling along the edge since
each component is low-pass along the direction of the edges. This additional
compression is the advantage of directional decomposition. Some information about
the profile of the edge must also be coded and transmitted. This can be done by
modelling the profile with a simple analytic function and transmitting some
parameters of the function.

Since the directional filters used for decomposition are not perfectly sharp, some
edges will appear in more than one directional component. This redundancy can be
reduced by using a form of prediction between components.

At the receiver the low-pass component is interpolated to full resolution. Each
of the high-pass directional components is synthesized from the edge location and
profile information. All of the components are combined to form the reconstructed
image. The relative weight of the high-frequency portion of the image can be adjusted
to control the sharpness of the edges.

Compression

Reasonable quality images can be obtained at compression ratios up to 60:1 for
8-bit originals. Somewhat blurred, but still easily recognizable, images can be obtained
at compression ratios in the range of 90:1 to 120:1.

Spatial Domain

Since both the high and low spatial frequency components are compressed,
degradations can result from either or both of these components. Loss of detail is the
major degradation. The amount of lost detail increases with the compression ratio
since the thresholds are increased in order to obtain more compression.

Temporal Domain
Not Applicable.

Aesthetic Appearance

By assigning a large weight to the high-frequency component, the image can be
made sharp even at high compression. However, the loss of detail will still be
noticeable.

Spectral Information
Not Applicable.
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" Anisotropic Nonstationary Predictive Coding

Anisotropic Nonstationary Predictive Coding [66] is basically a predictive
technique. The prediction uses a combination of a low-pass filter, a high-pass filter,
and an anisotropic filter to enhance edges. These filters are weighted with
non-stationary weighting functions and linearly combined to form the actual prediction
filter. In one scheme, the difference signal is coded using a Discrete Cosine Transform
on each row. In addition to the difference signal, the weighting functions must also
be transmitted. These functions are low-pass so they are under-sampled at 1:6 and
quantized fairly coarsely. The high degree of adaptivity of the predictor to local
anisotropies allows the difference signal to also be encoded with few bits.

Compression
Good quality images can be obtained with compression ratios as high as 30:1
from 8-bit originals, although 20:1 is more typical.

Spatial Domain

This technique does not handle well fine texture at low bit rates. However, if the
texture is not important, it can be filtered out before encoding. Otherwise, the major
degradation is wide band quantization noise.

Temporal Domain
Not Applicable.

Aesthetic Appearance o : ,
The reproduced edges are sharp and coarse texture is reproduced well. The visible
errors are in highly detailed regions. Without close inspection, these errors are not

highly visible.

Spectral Information
Not Applicable.
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Minimum Noise Visibility Coding

One effective way to take advantage of HVS characteristics is to "hide" the
quantization noise by moving it to areas where it is less visible. As a result, lower bit
rates can be used to achieve comparable quality images. Minimum Noise Visibility
Coding (MNVC) uses two effects to hide the noise. One is that noise is more visible in
darker areas than in lighter areas. However, there exists a scale, called the "lightness”
scale, on which equal increments are equally visible. Therefore, the luminance values
are transformed to the "lightness" scale prior to quantization in order to distribute the
noise evenly over the intensity range in terms of visibility. The other effect is less
vigibility of noise in areas of high detail, e. g., near high-contrast edges. Figure 5
illustrates the MNVC concept.
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Figure 5: A Minimum Noise Visibility Coding encoder

As with many other HVS compensation techniques, MNVC [67] involves
geparating the high and low spatial frequency components. The low frequency
component is sub-sampled at 1:5 and transmitted with the full 8-bit representation.
The high frequency component is quantized at a much lower bit rate per pixel. First,
however, pseudo-random noise (PRN) is added in order to eliminate the correlation
that would exist in normal quantization noise. Then a tapered quantizer is used to
place more error in high detail areas in order to take advantage of the property of the
HVS mentioned above.

Colorimages are encoded in the YIQ format. The Y (luminance) signal is encoded
identically to amonochrome signal. The I and Q (chrominance) signals are sub-sampled
in the same manner as the low frequency luminance component.

At the receiver the PRN is subtracted from the high frequency component. The
low frequency component is interpolated to full resolution, and the two components
are combined to produce the reconstructed image.
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Compression

Using standard television resolution, encoding the high frequency luminance
component at 4 bpp produced images subjectively as good as the original 8 bpp signal.
The low frequency and chrominance components each use 0.53 bpp, so the overall
result was 5.6 bpp for a color signal and 4.5 bpp for monochrome. MNVC is a
low-compression technique where the emphasis is on invisibility of the quantization
noise when the bit rate isreduced. It was found to produce subjectivelyless degradation

than DPCM for a given bit rate.

Spatial Domain

The degradations involve quantization noise in the high frequency component
and under-sampling in the low frequency component. The latter is not significant due
to the sampling theorem.

Temporal Domain

The PRN that is added to the high frequency signal can produce a "dirty window"
effect ifit is synchronized to the frame rate. Using totally unsynchronized PRN makes
the image appear more noisy. This trade-off has to be optimized.

Aesthetic Appearance

The number of bits per pixel mentioned above yields a reconstructed image whose
noise is essentially invisible to a human observer. As the number of bits per pixel
decreases, results similar to those from DPCM become likely.

Spectral Information
Under-sampling the I- and Q-components at 5:1 had little effect on the overall
quality of the color image.

Constant Area Quantization

Constant Area Quantization (CAQ) [68][69][70] is a predictive technique similar
to Delta Modulation. Unlike DM, however, the difference is compared to a threshold;
and if the difference is small enough, a 0 is transmitted. Ifthe magnitude of the signal
is above threshold, either a P or N is produced to indicate positive or negative change.
The technique is called Constant Area Quantization because the threshold, as well as
the positive and negative quantizationlevels, are adjusted to keep the area, A, (distance
x luminance) under the triangle from the previous P or N to the current one constant.
This is eqmvalent to setting the threshold equal to A/n where n is the number of pixels
since the prevmus Por N was produced This scheme provides high resolution for high
contrast regions and high compressxon for low contrast reglonsﬁillxe motivation for

CAQ is the property of human vision where the eye sees more detail in high contrast
regions.
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A number of modifications have been made to CAQ in order to reduce the error
and/or the bit rate. One modification makes the area threshold adaptive to the detail
of the image. Another possibility is to have a 2-D predictor instead of the using the
value at the last P or N as the prediction. This is called Predictive CAQ (PCAQ). The
entropy of the output reduces 30% by providing a better prediction, thereby reducing
the number of Ps and Ns. A third possibility for reducing the error incorporates
overshoot into the scheme, i. e., to make the quantization levels larger than the
thresholds. This allows the reconstructed signal to follow the original signal more
closely. Combining a Hadamard transform in the perpendicular (vertical) direction
with the basic CAQ will also reduce the bit rate by taking advantage of the correlation
in that direction also.

Some of the great advantages of the basic CAQ are its minimal complexity, power
consumption, and cost. The method was originally designed for a remotely piloted
vehicle where these factors are critical. Adding overshoot does not increase the
complexity, whereas improving the predictor does. However, with the improvements
inhardwarein thelast decade, all of the variations considered above should be practical
even under severe power and cost constraints.

Compression

The basic CAQ will produce an output signal having a maximum zeroth-order
entropy of 1.58 (=log,3) bpp. Typically, the entropy is about 1.1 bpp since 0 is more
common than P or N. Huffman coding is used to approach the actual entropy values.
When the entropy is near or below 1 bpp, Huffman coding should be implemented on
blocks of 2 or more pixels in order to include code symbols that require less than 1 bpp.
Using a high detail test image, the MSE was about 3% at 1.08 bpp. Introducing
overshoot produced an MSE of less than 2% at about 1.2 bpp. PCAQ resulted in an
MSE of about 1% at 1.3 bpp and about 1.5% at 1.0 bpp, using the same test image.

Spatial Domain

Basic CAQ has the same type of problems as DM, i. e., not being able to handle
both large slopes and low contrast regions. Also, the reconstructed signal always lags
the original and contains blurring of edges. Large slopes and low contrast regions are
reduced somewhat by using PCAQ to provide a better prediction or by making the
method adaptive. The lag and blur are relieved by using overshoot.

Temporal Domain
Not Applicable.

Aesthetic Appearance
The images produced by the basic CAQ appear blurry. However, it is still possible
to use the images for object recognition. PCAQ produced a much clearer image.

Spectral Information
Not Applicable.
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Perceptual Space Coding

A method which minimizes the perception of distortion takes advantage of the
HVSmodel. Perceptual Space Coding [71][72][73] attempts to rninimize the distortion
in a "perceptual” space, i. e., in a domain obtained by passing the image through the
model of the HVS.

A commonly used model of the HVS involves a linear transformation of the input
color components (RGB, YIQ, etc.) into a luminance component and the two color
components that correspond to the types of cones in the retina. Each component passes
through a logarithmic compression in an attempt to model the neural response of the
receptors of the retina. The next step in the HVS involves what are known as
color-opponent cells. The action of these cells is modelled by two weighted linear
difference circuits which subtract weighted multiples of the chrominance signals from
the luminance signal to produce the perceptual chromatic information. Each
perceptual component is then passed through a linear band-pass filter which replicates
the lateral inhibition mechanism of the ganglion cells.

Using this model, the distortion criterion is the MSE in the perceptual space at
the output of the system. To compress the image, it is first passed through the system,
i. e., converted to the perceptual space. The linear filter is implemented by
multiplication in the spatial frequency domain. The Fourier coefficients, at the filter’s
output, are then quantized with fewer bits than the original image using a method
which minimizes the MSE. The bit allocation for the Fourier coefficients is determined
by the power spectra of all three components so that more bits are used for the
coefficients that contain more power.

At the receiver the inverse of the HVS model is applied. The reconstructed image
may have a relatively high MSE in the image domain. However, the errors are "hidden”
so that they are not highly noticeable. Therefore, the subjective image quality is much
higher than other images with the same MSE.

Iftheimage is monochrome, only the logarithmic compression and bandpass filter
steps of the HVS model are used. Otherwise, the method remains the same.

Compression

A low detail 512 x 512 monochrome image was encoded at 0.1 bpp with an MSE
in the image domain of 0.72%. This image was of usable quality. A number of color
images of varying detail were encoded at 0.25 bpp with MSEs ranging from 0.36% to
3.3%. These images were reported to be of excellent quality.

Spatial Domain
The errors are due to quantization errors in the spatial frequency domain. Since
the transform is done on the entire image, no blockiness should occur.

Temporal Domain
Not Applicable.

Aesthetic Appearance
The degradation of quality with reduced bit rates was reported to be "graceful”.
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Spectral Information
No specific information was reported.
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Transform Coding

Transform codingis an information lossy technique whichusesa mathematical
operator on the data representing a digital image. The input data are typically highly
correlated, so the goal of transform coding is to derive an array of uncorrelated or
nearly uncorrelated data from the input data. A typical transform coding scheme is
shown below. o ,

f(x.,y) Flu,v)
PRE-EMPHASIS ORDER
o 4 BLOCK SIZE »{ XFORM »| QUANTIZER _.*
F(u,v) P(U,V) f(x,y)
INVERSE VA
_ | BIT ALLOC.
> CHANNEL 1 XFORM * DE-EMPHASIS [

Figure 6: The process of Transform Coding

The mathematical operators used in transform coding form a complete
orthogonal set of basis vectors. A complete set of basis vectors allows the original data
to be described as a linear combination of all basis vectors in the set. Orthogonality
implies, in a given set of basis vectors, any one basis vector cannot be represented as
alinear combination of the other basis vectors. In other words, each of the basis vectors
is unique. The Fourier transform is a very familiar transform whose basis vectors are
complex exponentials. SR

A block of digital image data, f(x,y), in an M x N array can be expressed as a
newM x N array, F(u, V), via a two-dimensional transform according to the relationship

M-1N-1

Fu,v)= ¥ Z f(x,y).&,y)

x=0 y=0
where ¢,,(x,y) are a set of orthogonal basis vectors.
The image data are fully recoverable using the inverse transform

M-1N-1

fx,y)= £ X Fu,v)o,®,v)

u=0v=0

again, where ¢_)(u,v) represents the transform kernel or basis vectors for the image

space.

It is common to think of transform coefficients as representing a "frequency
domain", although this term is truly accurate only in the case of the Fourier transform.
Some authors have coined the word "sequency” to describe the pseudo-frequency
domain behavior of the other transforms.
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Atransform acts to "pack” a large number of highly correlated image data samples
into a smaller number of uncorrelated coefficients. If the image’s information is
analogous to the energy stored in a mechanical system, then transforms pack diffuse
energy into more compact energy "packets". The majority of the energy, the average,
is packed into the first "packet”. In discussing images, this first value is known as the
DC coefficient. This term represents the average intensity, or value, of the pixels in
the image block. The remaining terms are known as AC coefficients. The amount of
the image’s information in each packet, or the amount of correlation between pixels,
decreases as the order of the coefficients increases. For most transform kernels, this
order is the "sequency" order. Many bit allocation and quantization schemes
(digitization) act to reduce or filter this high "sequency” data. The effect is analogous
to frequency filtering in electrical and electronic systems.

In broadcasting and other types of electronic communication, a technique known
as pre-emphasis/de-emphasisis employed to overcome deleterious effects of bandwidth
compression. This electronic processing is proven beneficial in image processing.
Electronic pre-emphasis is added to the analog image signal prior to digitization. At
the receiver, electronic de-emphasis is added after the digital, reconstructed image is
converted to the analog domain. In addition, an optical filtering process is employed
with spatial bandpass filtering prior to the video camera’s focal plane. The section on
optical implementations of VDC in HHVT discuss this second method.

Both techniques help to reduce the blockiness and edge busyness associated with
transform methods. They contribute very little to implementation complexity, while
increasing the effectiveness of image compression. A technique such as these should
be an integral part of any image compression or processing scheme.

The transform is a reversible process until quantization of the coefficients and
no data compression occur. Both of these processes will introduce distortion. Also,
usually M = N.

Quantization of coefficients can be performed using a uniform quantizer, an
optimal quantizer, a compander/expander or by adaptive methods. The quantization
processis the key step in a transform coding algorithm since it is here data compression
is performed and output image fidelity is affected. F(u,v), known as the coefficient
array, and f(x, y), the original image block, are both N x N arrays with n bits per array
element or N’ x nbits total. Data compression of the F(u,v) arrayis achieved by reducing
the number of bits used to quantize some of the coefficients. A common feature of the
various transform coding algorithms is many of the coefficients will be of very small
magnitude. These coefficients are thus coarsely quantized or even omitted, with
negligible effect on image quality.

This process will result in a compressed coefficient array F'(u,v) which may be
further compressed by entropy coding the coefficients. The result will be transmitted
over the communication link with some type of error correcting code. At the receiver,
decoding followed by the inverse transformation (and de-emphasis) will be performed
on the F'(u,v) array, resulting in f'(x, y), the output image.

The following sections describe the various parameters of transform coding

systems. It is assumed we are dealing with square images, e. g., 512x 512 or
1024 x 1024 pixels.
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Block Size and Dimensionality

Transforms are performed on line segments of length N of an image (one
dimenswnal), on N x N blocks of the image (two dimensional), or on N x N x M blocks
of an image sequence (three dimensional). Often, the third dimension is time. One
and two dimensional transforms are intraframe coding techniques, whereas three
dimensional transforms are interframe coding techniques.

One dimensional transforms are usually performed on the horizontal lines of an
image since data are often raster scanned horizontally. A whole line or a segment of
a line may be used. One dimensional transform coding has advantages over
multidimensional transform coding of speed and implementation simplicity. However,
one dimensional transforms are inefficient since they only take advantage of spatial
correlation of animage in the horizontal direction. Thus, under the same image fidelity
criteria, an one dimensional transform coder will not be able to achleve as high a
compression ratio as the multidimensional transforms.

In practice, one dimensional transform coding is seldom implemented by itself.
A common technique uses transform coding in the horizontal direction and predictive
coding in the vertical and temporal directions.

Two dimensional transform coding usually begins by subdividing the whole image
into N x N sub-blocks. Transform coding is then performed on the sub-blocks. Two
dimensional transforms take full advantage of intraframe correlation in both
directions, unlike one dimensional transforms. They are not as fast since N lines of
the image must first be stored before the transform process can begin, and they are
somewhat more complex to implement. Usually, the increased coding efficiency more
than offsets the other factors.

The choice of block size (the choice of N) is an important parameter in two
dimensional transform coding schemes. For simplicity, N is always chosen as an
integer power of 2. Large and small values of N each have unique advantages and
disadvantages. Transform coding schemes with large values of N perform better under
a given fidelity criterion at high compression ratios [74]. These schemes take
advantage of correlation over a larger area. Those with smaller values of N are faster,
easier to implement and more receptive to adaptivity. One author [75] suggests the
intraframe correlation for most images is negligible beyond a spatial distance of 20
pixels and recommends smaller blocks. 4x4, 8x8, 16x16, 32x 32 and 64 x 64
transform coding schemes have been implemented in cases appearing in the literature.

Three dimensional transform coding schemes subdivide a sequence of image
framesinto N x N x M blocks. They are the most efficient of transform coding schemes
since they fully exploit correlation in the spatial and temporal directions. However,
they are high in implementation complexity. Also, they are much slower since M-1
frames plus N lines of the image sequence must be stored before the transform coding
can start. This decreases their attractiveness for use in real-time systems.

To minimize complexity, small values of N and M are chosen. Research indicates
higher values of M (i.e., coding more frames at a time) result in a lower MSE [76], but
choosing M = N allows for vector processing to speed the address evaluations of three
dimensional arrays [77]. Block sizes of4x4x4and 8x8x4 and 4 x4 x 8 are most
common in the literature [78].
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Quantization and Bit Allocation

Once the array of transform coefficients is determined, the next task is to quantize
them for storage or transmission. Data compression is achieved by deleting low
magnitude coefficients and coarsely quantizing. Coarse quantization assigns fewer
bits to these coefficients. There are several methods for accomplishing this.

One method is known as threshold sampling or magnitude sampling. By this
method, all coefficients above a certain magnitude are retained while those below the
threshold are deleted. This results in an address set, F(u,v) given by

F(u,v)={Fu,v): |Fu,v)|>T},

where T is the predetermined threshold.

Extra bits are required to address the transmitted coefficients [79], so magnitude
sampling requires overhead. However, magnitude sampling adapts to the local
statistics of the image, and thus performs well. The transmitter’s coding operation is
independent of the receiver’s decoding operation. Also, this overhead is often much
less than the overhead required to transmit a codebook in other block based methods.

Another quantization method, zonal sampling, uses on the variance of the
transform coefficients. The variance of the coefficients decreases for the higher
sequency coefficients, and the coefficients with the largest variances contribute most
to the reconstructed image [80]. Zonal sampling assumes a given coefficient’s variance
will be constant for a given class of images, even though its amplitude will fluctuate.
This allocation scheme relies on average statistics across a class of images. However,
it is suboptimal since it does not adapt to the local statistics of each individual image
as was the case with threshold sampling. The address set, F'(u4,v), for zonal sampling
is obtained by

F(u,v)={F@u,v): o.,>Vi},

where V; is the minimum variance with which a coefficient is retained.

In addition, since zonal sampling is based on average statistics of a class ofimages,
a bit allocation map may be developed a priori which results in coarser quantization
based on smaller variance (dynamic range). The DC coefficient (representing the
average value) has the largest variance and will be quantized with a full eight bits,
but other coefficients will receive fewer and fewer bits based on smaller and smaller
variances. These zones, within which coefficients share the same number of bits, may
be determined empirically or using a numerical fidelity criterion such as

n, = trunc l10 02""’+l
b 2% p 7;
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where n,(z,v) is the number of bits assigned to coefficient F'(u,v), trunc represents the
truncation operator, and D is the maximum distortion penalty of quantizing with n,

bits [81]. The result of a zonal sampling algorithm is a bit allocation map such as the
one shown below in Figure 7.

8765433221110000
7665433221110000
6554433221110000
5544433322111000
4443333222111000
3J333322222111100
3333322221111100
2223222111111000
2222322111111100
2222221111111000
1111111111100000
1111111111100000
1111111111100000¢0
11111111110000¢00¢0
11111111110006000
1111111111000000

Figure 7: Bit Allocation Map from Zonal Sampling

Once the coefficients and their respective bit allocations are known, quantization
is performed. This can be accomplished with either a uniform or nonuniform quantizer.
Statistically, it has been shown the DC coefficient is best approximated by a Gaussian
distribution and the remaining coefficients are best approximated by a Laplacian
distribution [82]. Therefore, optimally, the DC coefficient would be quantized with a
Gaussian quantizer and the remaining coefficients with a Laplacian quantizer.

The quantization and bit allocation process results in data compression, but this
process also introduces distortion in the reconstructed image, f'(x, y). The mean square
error resulting from quantization is given by

&=E(3, % [f(c,3) -, )}

where E represents the expectation operator.

For the same mean square error, zonal sampling results in reconstructed images
more objectionable to subjective human observers than threshold sampling [83]. The
quantization noise from zonal sampling is more noticeable than the low pass filtering
from threshold sampling. This implies a complexity vs. performance trade-off, which
may be optimized with a hybrid sampling technique [84].

Color Signal Transform Coding

Color images may be transform coded by coding the individual color components
separately or coding the composite signal. For digital video systems, component coding
is more desirable [85]. Even though the component system conversions may cause
additional degradation, the better coding efficiency usually compensates for this [86].

YIQ co-ordinate conversion provides almost as high an energy compactness for
color images as does the Karhunen-Loeve Transform (KLT) color co-ordinate
conversion [87]. By its definition, the KLT (or principle components) produces the
most uncorrelated, and therefore optimal, transform coefficients.
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Figure 8: Typical YIQ component coding scheme, with bit allocation tables based on zonal sampling.
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Adaptivity

Adaptive transform coding schemes compensate for statistically non-stationary
images by changing quantization levels or bit allocations. Optimal adaptive methods
use changes in local statistics. Adaptive techniques tend to improve coding efficiency
at the expense of raising complexity. A number of simple adaptive and quasi-adaptive
techniques have been developed. This report investigates some of them.

The most common adaptive technique uses coarse coefficient bit allocations in
regions of the image where detail (i. e, high sequency coefficient contribution) is low
and finer quantization in regions of high detail. A drawback which is immediately
apparent is the problem of informing the receiver of the quantization scheme.

An effective way to overcome this problem is the technique known as class
adaptive transform coding. Depending on the sum of the magnitudes or variances of
the coefficients (known as the activity index), a particular coefficient array is classified
into one of K distinct classes. K = 4 is by far the most common [88]. This requires
only a log;M bit overhead per block to identify of which class that particular block is
a member. The added complexity is moderate and the coding efficiency at a given
fidelity criterion can improve significantly, depending on how stationary the image’s
statistics are. Figure 9 shows the bit allocations for the four classes for the luminance
component of one such coding scheme. Note that since different numbers of bits are
used to code different blocks, there must be an output buffer to allow a constant output

bit rate [89].

Class adaptive transform coding based on coefficient variances is more efficient
than coding based on coefficient magnitudes [90]. We will describe two techniques
here.

With the first variance-based technique, a procedure known as recursive
block quantization is used to determine coefficient variances. The coefficients
are placed into a one-dimensional array using the ordering procedure shown in
Figure 10 -- F(u,v) becomes F, -- and the recursive relationship for coefficient
variance is given by 67,, = wo? + (1 - w)f,, where o7 is the quantized value of the
variance of the coefficient F,, F, is the quantized value of F,, and w is a weighting
factor found to be 0.75 for best results.
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The second technique [91][92][93] makes two assumptions based on the original
image, f(x,y). First, this technique assumes the mean value of all AC coefficients is
0. It also assumes the mean of the DC coefficient is the average brightness of the
original image f(x, ) which is denoted as m. From the transform definition, thisimplies
E{F(u,v)} is 2m. The variances of the coefficients, F(u,v), are then given by

o2, =E{[F(0,0'} -4m* u=v =0,
and
o2, =E{[Fu,v)I'; (,v)#(0,0).

Approximate Gaussian density functions for each coefficient are formulated from
these parameters. Using the results of [94] we can set up Laplacian densities for the
AC coefficients. The Laplacian density is given by

auw LBl
pF(u.v)(B)= 2 e_“k' ’

where 0, , is a parameter which can be calculated from o , by

Oy
O&na= i (u{V)?(0,0)

and B represents an AC coefficient.
The AC energy of a transform block is computed as

N-1N-1

Eyc= X I [F@u,v)I*-[FO,0)".

u=0v=0

The magnitude of the AC energy is used to classify the transform block into the high
energy class or the low energy class. Several frequency regions, consisting of 16 x 16
blocks, are of particular interest. These regions include low-frequency, mid-frequency,
high-frequency, and horizontal and vertical edges. Figure 11 shows the locations of
typical regions.

Then, the ratio of low frequency AC energy to high frequency AC energy will
subdivide each of these classes into a high frequency class and a low frequency class.
High and low frequency coefficients are grouped. This system works better than
classifying based on AC energy alone since human vision is more sensitive to high
frequencies at low illuminations [95].
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Figure 11: AC energy classification by frequency

The result of this procedure will be each of the four classes will contain different
numbers of image blocks, which hinders the maintaining of a constant bit rate. The
solution assigns bits to the classes with the constraint that the average bit rate is
constant.

The next step calculates the ensemble average of the variances of each F(u,v)
coefficient in the whole frame for each class k by

L L
NKR lm i
of(O,O):T ")5 z [F,. ,(0,0)* - 4m?;
_and
NzK"lJE 1;’3; 1

o) ="y X I [F..5 )00y

where k =1,2,...,K and the variables m, n index the various sub-blocks within the total
image. The total image size is L x L and the sub-block size is N x N.

Now we can consider bit allocations for each class. The bit allocation matrix for
class k is given by the following equations

N, (u,v)= %logz[of(u,v)] -log,D; (u,v)#(0,0),

and
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C, Z Z log,[o3(u,v)]

2L(N - 1)[ N=0 % ] o2

log,D = N—1

where c, is the number of N x N blocks aséigned to class &, bpc is the number of bits
assigned to the DC coefficient (usually 8 bits) and b,,, is the desired average bits/pixel

(bpp) obtained from the desired compression ratio, not including overhead. This may
need to be done iteratively until the desired number of bits is used exactly.

Now, the classes and bit allocations have been determined. The next task is to
normalize the transform samples prior to quantization. For a given class and
coefficient, the normalization coefficient is given by

o) =c(2*); @)= 0,0

where ¢ is a normalization factor which is the maximum standard deviation value of
all transform sample values which are assigned one bit.

The overhead in bits/frame for this rather involved but effective technique is
given by

L ¥V )
B= 2(2N) +b_+6N?,

where b, is the number of bits to encode ¢. For N =8, L = 1024 and b, =6, the

overhead is about 8600 bits/frame or about 0.008 bit per pixel [96][97]. Clearly,
overhead is minimal.

Interestmgly, the concept of threshold sampling of the coefficients described in
a previous section is by nature an adaptive technique since more coefficients will be
transmitted when the image block has finer detail [98]. This has the drawback of
needing to code the positions of the coefficients, however.

Another adaptive technique is to vary quantization parameters so the MSE is
maintained at a constant value. This technique is complex to implement and has been
shown to perform no better than class adaptive transform coding [99].

Coding The Coefficients

Once the F/(u,v) array representing the quantized coefficients is known, further
data compression can be achieved by coding the coefficients for transmission using the
entropy coding techniques described earlier.

Run length coding is a logical technique since the coefficient array will contain
many zero-valued coefficients.

It has been suggested that chain (or contour) coding of transform coefficients
could reduce data by 10-30% [100][101]. By chain coding the boundaries between the
zero coefficient and non-zero coefficient regions, the non-zero coefficients are clustered
together and can be more efficiently identified.
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Chain codes are a set of directed line segments known
as links. A candidate link is selected for the chain’s
next link ifit spans only zero-coefficients and if at least
one neighboring coefficient, to the right of the link, is
‘ . non-zero. An eight direction Freeman code is shown in
the adjacent figure. This eight-direction code is only

the first member of a large family of (8 xm)-direction

s j , codes, where m is an integer. This family is suitable
for representing planar curves. )
Figure 12: 8-direction _ Inthe caseof adaptive fransform cpdm%, the chain
Freeman chain code coding algorithm outlines the boundaries o

non-zero coefficients in the transform domain. The non-zero coefficients and the chain
links are then coded for transmission. The coded chain links provide a more efficient
coding of zero coefficients than does run-length coding. The additional complexity of
implementing this algorithm is modest.
The Basis Vectors

Finally, we need to consider different types of basis vector sets. These sets of
functions need to be orthogonal and complete. Orthogonality implies a given basis
vector cannot be represented as a linear combination of the other basis vectors.
Completeness means any image is specified in terms of a transform coefficient matrix
and is fully recovered (no distortion) via the inverse transform as long as quantization
and compression have not yet been performed. The basis vector set is perhaps the
most widely studied parameter of transform coding and will be treated in-depth here.

Karhunen-Loeve Transform

The Karhunen-Loeve transform (KLT) is also known as the Hotelling transform
or the method of principal components. The transform algorithm selects the optimal
set of orthogonal basis vectors so the elements of the coefficient array are uncorrelated
[102], that is

E{F(u,,v,\)Fu,, v} =0; if (u,v)=(0,0)

with the transform coefficients assumed to be random variables. The basis vectors
determined by the KLT are actually the eigenvectors of the covariance matrix.

Since it produces completely uncorrelated coefficients, the KLT represents the
optimum transform based on lowest distortion at a given bit rate and the least bits
required to encode the coefficient array at a given distortion criterion.

However, the KLT is not easily implemented since it requires by far the greatest
number of calculations of any transform coding technique (it has no known "fast"
algorithm). Also since the basis vectors are not known at the receiver, they must be
encoded along with the coefficient array. This large overhead requirement defeats the
optimum coding of the coefficient array.
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Yet, the KLT is useful because it sets the limit on the performance achievable
with any transform coding scheme. In practice, transform coding techniques use a
suboptimal set of basis vectors which are already known at the receiver. As we shall
see, the performance of the KLT can be closely approximated by some of these less
optimal transforms at great computational savings.

The KLT requires the formation of a set of vectors (this depends on the output
of the sensing device). It also requires the estimation of the covariance matrix and
the calculation of its eigenvectors and eigenvalues. The time needed to calculate
eigenvectors and eigenvalues is lengthy. It precludes real time, video rate operations.
Not only is memory required when calculating the eigenvectors and eigenvalues; but
additional memory is required for storing the elements of the covariance matrices.

NUMBER OF COVARIANCE MATRIX
ELEMENTS VS. IMAGE SIZE

NUMBER OF
COVARIANCE

16777216
67108864 |
268435456 |

This table reflects the enormous memory required for the covariance matrix as
the block size increases. "[A] major drawback is that the required number of
computation steps is also proportional to MN? for an M x N image, which [this table]
implies, is very large for many images" [103].

This lengthy, iterative nature of the KLT is known as principal components
analysis. By using backward error propagation in a neural network implementation
of this process, researchers hope to learn the elements of the optimal algorithm.
Backward error propagation is a supervised learning scheme which changes the
weights between non-linear units in a neural network. The non-linear units compute
a sigmoidal function of their inputs. Learning occurs in each unit in the network by
reducing the MSE of the output image. The learning algorithm produces a nearly
linear transformation of the input, which are image pixels. The researchers termed
the results "respectable . . . when compared to current techniques.” [104].

Compression:

Good quality reconstructed pictures result when using the KLT, while achieving
compression as low as 0.5 to 1.0 bpp. Experiments demonstrate the MSE ranges from
1.5% to 0.5% at these rates.
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Spatial Domain

The KLT is capable of maintaining crisp edges and texture in the reconstructed
image. These two features, being of higher spatial frequency, are the most sensitive
to the quantization scheme which is employed. Some blockiness is observed in
non-adaptive methods. For the best results, an adaptive scheme must be used. This
suggests a continued interest in neural network implementations of this algorithm.
With a compression rate of 1.0 to 1.5 bpp, the reconstructed images exhibit a good
definition of detail.

Temporal Domain

No reports of studies involving motion or interframe applications were found.
The studies emphasize still images, due to the computational complexity of the
algorithm.

Aesthetic Appearance

The KLT proves robust in minimizing transmission errors. In general, this holds
true for transform techniques. Still, as the bits per pixel decreases, transform encoding
will show block errors. These errors are caused, in part, by transmission errors.
However, because of the block oriented processing, transform encoding does not result
in the compounded errors of other techniques. These compounded errors can cause
streaking, lost frames, and jerky motion.

Quantizing errors are distributed throughout the reconstructed image. This
benefit results in visually less objectionable images. Errors are often undetectable to
an untrained observer. To show the errors, researchers often employ an image which
maps %MSE x 4. In such images, one sees that errors are not concentrated to one
specific feature, such as edges or low spatial frequency areas (contours). To the casual,
or inexperienced, observer, the greatest errors occur in areas of very high detail or
texture.

The KLT and DCT perform the best at preserving edges. Again, edge fidelity
improves with adaptive quantization.

Spectral Information
The distortions produced by encoding color images were generally similar to those
produced by using monochrome images.

Discrete Cosine Transform

The two dimensional Discrete Cosine Transform (DCT) of an N x N arrayis given
by

~1N~-

Fpe#,v) = %C(u) C(v) NZO E: f(x,y)cos[ @x+ D ;;)nu ] cos[ @y + hmv ;—;)nv ]

where C(0) = and Cu)=1 if u>1.
The inverse two dimensional DCT is given by
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fx, y)-— g g‘: C(u)C(V)Fm(u,v)cos[M] cos[————(2y+1)m].

2N 2N

For N x N x M sub-blocks, the three-dimensional DCT is given by

Focr(#, v w)=-—C(u)C(v)C(t) il NZI lef(x Y ‘)ws[ Qx;Nﬂ] ws[_(zy;;)m]m[ = ;le)m]

The DCT is an attractive choice for a basis vector set since the performance of
the DCT closely approximates that of the KLT [105]. In fact, for an image which can
be modeled by a Markov source with correlation coefficient close to unity, the KLT
reduces to the DCT [106]. For most classes of images, this is a valid assumption.

Yet, the DCT has enormous advantages over the KLT in terms of simplicity.
Since the basis vectors of the DCT are known in advance, they need not be calculated
for every transform block as they do with the KLT. Also, the basis vectors need not
be transmitted along with the coefficients, and there are several "fast" algorithms for
computing the DCT which make real time applications feasible [107]. These savings
in overhead actually make the DCT more efficient at a fixed bit rate than the KLT.
This justifies removing the KLT from further consideration for HHVT. In fact, the
DCT has been shown to have the highest coding efficiency (i.e., highest compression
ratio with least distortion) of any transform coding scheme. However, in spite of the
vast reduction in complexity over the KLT, the DCT is still moderate to high in
complexity of implementation compared to other algorithms. -

Computational simplicity suggests that the Hadamard transform is the best
choice for an encoding implementation. Yet, as will be demonstrated, it suffers a
significant performance degradation, especially when compared to the DCT, Specific
VLSI hardware provides efficient, fast implementations of the DCT. Hence, it appears
best for applications requiring the highest degree of compression while minimizing
coding distortion.

Compression

Use of the Discrete Cosine Transform results in good quality reconstructed
pictures, while achieving compression as low as 0.5t0 1.0 bpp. Experiments
demonstrate the MSE ranges from 1.50% to 0.50% at these rates. Adaptive
quantization yields even lower MSE. Experimental results range from approximately
0.75% to 0.20%. The higher bit rate, 1. e., less compression, yields the lower MSE.

Spatial Domain

The DCT maintains crisp edges and texture in the reconstructed image. These
two features, being of higher spatial frequency, are the most sensitive to the
quantization scheme which is employed. To minimize blockiness, an adaptive scheme
is preferred. With a compression rate of 1.0 to 1.5 bpp, the reconstructed images exhibit
a good definition of detail.
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Temporal Domain

Several reports of studies involving motion or interframe applications indicate
gains in both compression and %MSE. This is a result of greater correlation between
pixels in successive frames. Unfortunately, the increase in computation time, and
circuit complexity and size, has limited the practice ofinterframe techniques. However,
the use of a charge coupled device (CCD) or charge injection device (CID) sensors would
greatly facilitate these algorithms.

A three dimensional DCT yields roughly a 30% improvement over the
performance of a two dimensional DCT. When a motion compensated (MC) algorithm
performs interframe compression, one achieves a 100% improvement over the 2D-DCT.
These improvements are most noticeable in areas of no motion. As the motion
increases, the advantages of the interframe encoding decrease; but this suggests a
preservation of motion.

Aesthetic Appearance

The DCT proves robust in minimizing transmission errors. Schemes using very
low levels of encoding, from 0.5 to 1.0 bpp, result in a great degree of compression.
However, at these low levels, the reconstructed image becomes more sensitive to
transmission errors. One begins to notice block errors.

The reconstructed image has very evenly distributed quantizing errors. This
benefit results in visually less objectionable images. As with the Karhunen-Loeve
transform, errors are often undetectable to an untrained observer. The most noticeable
errors occur in areas of very high detail or texture.

The DCT performs the best at preserving edges. Again, edge fidelity improves
with adaptive quantization.

A hybrid MC/2D-DCT does not portray blurred motion seen in some
non-transformbased techniques. While yielding a spatially, good quality reconstructed
image, it does have some slight flickerin intensity around the boundaries of the motion.
This flicker does not inhibit an observer’s viewing or evaluation of the content of the
image. A discussion of this method in the section on hybrid techniques will show some
means to eliminate this.

Spectral Information

RGB distributed errors produce a slight reduction in color purity. For thisreason,
RGB values are converted to less correlated YIQ values. Discrete cosine
transformations of the YIQ yield very accurate color in reconstructed images. Between
adjacent pixels, the DCT maintains slight variations in hue and saturation in the
reconstructed image. Very little contouring or banding appears. However, if the
encoding is horizontally oriented, vertically errors appear as blocks in background
areas. Often, the quantization procedure will place most of the errors in the Q- (and
to a lesser degree, the I-) components. This minimizes the distortions in the
reconstructed color images.
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Slant Transform

The Slant transform was developed to take advantage of linear changes in
brightness which occur in some classes of images. The transform is an orthogonal set
of sawtooth waveforms. -

These waveforms are generated via a recursive matrix procedure. The Slant
matrix of order two is given by

111 1
S’"«/_E{l -1]

and the matrix of order four is given by

1 0 1 0
1| a4 b, -a, b, S, 0 [0 0O
Vo0 1 o0 -1 [ sz] Where 9'[ }

-b, a, b, 9a, '

where a, and b, are determined by requiring a linear (constant negative slope) function
formed in row two, which yields that a, =2b,. This and the orthonormality condition
SS™=I lead to the following for S,

"1 1 1 17
3 1 -1 3
s B B B
‘T2l -1 -1 1
1 3 3
SRR

A second iteration of the process given in [108] results in the eighth order Slant
matrix, Sg, as shown in Enomoto and Shibata [109].
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The Slant transform does not perform as well as the DCT, but is significantly
easier to implement. The irrational constants the matrices contain may be stored in
a look up table in a hardware implementation [110]. Pratt, et al, develop a reordering
ofthese matrices to yield a signal flow graph from input image values to Slant transform
values. This signal flow graph leads directly to a systolic array based, fast, hardware
implementation.

Compression

With a compression of 1.0 to 1.5 bpp, the Slant transform produces fine
reconstructed images. Use of zonal, adaptive coding of the coefficients, help maintain
a%MSE of 1.0% or below. Adaptive techniques provide additional bandwidth reduction
of 50% for the same degree of image quality.

The optimum block size for this transform appears to be 8 x 8 or 16 x 16 pixels.
As block sizes within the image increase, the performance of the transformation
approaches that of the Haar and Hadamard transforms. The Slant transform results
in a lower MSE for moderate size image blocks when compared to the Haar and
Hadamard transforms [111].

Spatial Domain

The Slant transform reproduces linear variations of brightness quite well.
However, its performance at edges is not as optimal as the KLT or DCT. Because of
the "slant” nature of the lower order coefficients, its effect is to smear edges. At 1.5

bpp, the Slant transformed image is much more desirable than the Hadamard or Haar
transforms.

Temporal Domain
No information was reviewed.
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Aesthetic Appearance

High quality are produced images at a compression ratio of approximately one
half, But, as the rate of compression increases, the quality of the images drops off.
Compared to the Hadamard and Haar transforms, the Slant transform showed almost
no block effects.

The Slant technique is relatively tolerant to transmission errors. Such errors
tend to extend only to the end of one block. This depends, partly, on the coding method
used.

Spectral Information

Colors, when expressed in YIQ terms, seem quite accurate in reconstructed
images. At 2.0 bpp, block effects appear most noticeable in areas of low spatial
frequency, i. e., backgrounds. Edges in the reconstructed image are slightly less crisp
than in the original image. Still, they are quite clearly defined and discernable. Slight
variations in hue and saturation within adjacent areas are still preserved. Texture
in background elements, e. g., carpet and upholstery, is preserved very well in the
reconstructed image. At the same compression, reconstructed color images appear to
perform better than monochrome reconstructed images in maintaining texture and
fine detail. This suggests using color images when one wants to preserve texture.

Hadamard Transform

The basis vectors of the Hadamard transform comprise a set of orthogonal
rectangular waveforms which only assume values of 1 or -1 and are defined over a
given spatial interval. These waveforms are known as Walsh functions and the
transform has also been called the Walsh transform or the Walsh-Hadamard transform
[112]. - L L o

There are several ways of deriving these rectangular waveforms. The Hadamard
basis vectors in natural order can be found using Hadamard matrices. A Hadamard
matrix is square and has elements of 1 and -1 only and the rows and columns of the
matrix are orthogonal. The lowest order Hadamard matrix is of order two,

mely 2

For N x N matrices where N is a power of 2, Hy can be recursively derived as

Hy, Hy,
o raed

Since a Hadamard matrix equals its transpose, then the Hadamard transform
in two dimensions [113] is given by

Fy(u,v) = [Hy] [f(x, y)] [Hy]
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and since the inverse of a Hadamard matrix is itself multiplied by a scalar -1/N, then
the inverse transform is given by

f(x,y)=-$[HN1 [, V)] [Hy]

The natural ordered set of basis vectors obtained via Hadamard matrices is not
ordered by increasing sequency. Thus, the coefficients must be reordered before
techniques such as zonal sampling are applied.

The sequency ordered Hadamard transform may be obtained by Boolean
gynthesis. Here the transform is given by

-1
N-i1N-1 X [g,(x)x, +g;(v);)

Fyu,v)= X X fr,y) (1)’

x=0y=0

where g (u)=u,_; GW)=Uy Yy 5 GU)=Uy ;¥ Uy 5 oo By (@) =U UG
and Ugima = (a1l —2Un-3 - - Urllo)pinary

and similarly for v.
The additions within the summation in the exponent are performed modulo-2, that is,
binary additions with no carry.

One of the most advantageous properties of the Hadamard transform is how the
basis vectors assume values of 1 or -1 only. Thus, computing the transform involves
only combinations of addition and subtraction of the samples in the image array. The
"fast" algorithm for the Hadamard transform involves the least calculations of any
transform algorithm (only Nlog,N additions/subtractions and no long multiplications
gince all multiplications involves powers of two and can be performed by shift
operations) [114].

Another useful property of the Hadamard transform is that the coefficients in
the F(u,v) array will either be all even or all odd [115]. This permits further coding
efficiency by assigning a bit for even or odd to the whole array and then truncating
the least significant bit from each coefficient with no loss of information.

The Hadamard transform is the transform technique most easily implemented
in VLSI for real time applications [116][117][118][119]. Rather than zonal or threshold
sampling, ranking of coefficients yields the best results [120]. This ranking is
determined by spatial and temporal precedence guidelines [121]. A given coefficient
should not be transmitted unless those coefficients with higher precedence are also
transmitted. The result of not following this procedure is undesired edges or blurring.
Logarithmic quantization of coefficients is also desirable [122]. -
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Compression

Despite its computational simplicity, the coding efficiency of the Hadamard
transform is significantly below that of the DCT or Slant transforms. Thus, its
compressionis slightly less than the compression achieved with the previous transform
kernels (or basis vectors). As the block size increases above 8 x 8, experiments show
a marked increase in the MSE values between this transform and the KL'T, DCT, and
Slant transforms. - -

Compression down to the range of 1.0to 1.5 bpp produce good quality
reconstructed images. The %MSE between the original and reconstructed images falls
between 1.5% and 1.0%.

Spatial Domain

Atequal compression ratios, more distortion appears in a Hadamard transformed
image than a cosine transformed image. This applies both to mean square error criteria
and subjective evaluation [123]. Mean square error images (%MSE) show how
quantization error tends to gather in areas of high spatial frequency such as edges
and texture. This indicates poor coding performance. Uncorrelated pixels in MSE
imagesindicate good performance. Quantization errors, which are morelocalized than
previously discussed transforms, do not distort picture elements. Yet, compared to
the others, the reconstructed image appears out of focus.

Temporal Domain

By taking advantage of interframe pixel correlation, the Hadamard transform
yields a 30% to 100% improvement in compression (expressed as bits per pixel) and
%MSE.

Aesthetic Appearance

Some block errors appear as the pixel rate approaches 1.0 bpp. Undesired edges
or blurring may result from improper quantization of the coefficients.

The results of Hadamard transform encoding produce visually less objectionable
pictures than those resulting from lossy, predictive schemes. The pictures contain fair
edge reproduction. However, subjective comparisons of images employing other
transforms indicate the Hadamard provides the least desirable images. Experiments,
where quantization and bit allocation were the same for all transforms, supports this
conclusion. The only part of the implementation which varied was the particular
transform algorithm. ]

Spectral Information
The distortions produced by encoding color images were generally similar to those
produced by using monochrome images.
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Haar Transform

The basis vectors for the Haar transform are also rectangular waveforms, but
they may assume values of A, 0 and -A, where A is a constant which depends on the
"order” of the basis vector. The first Haar basis vector, HAR,(x) in one dimension is a
DC value defined over the interval (from 0 to N-1) which the transform is taken. The
rest of the set of Haar functions over the same interval can be found by

r 1 )
n [" +E]
\/2—” for -2—P$x < >

HARz’Hu(x) =1

1 L;
2 for [n+2]SxS[n+1]2"

2P

0 for all otherx

.

and the two dimensional Haar transform is found by

N-1N-

Fy,v) =$ 3. 3, )HAR,(HAR,0).

x=0y=

The Haar transform represents a measure of locally concentrated differential
energy within a sub-picture. The Haar transform is not a "sequency" type transform;
thus, zonal sampling is generally not used.

The Haar functions’ rectangular shapes make them fairly easy to implement in
VLSI circuits, but the scaling factors involving fractional powers of two make the Haar
transform more difficult to implement than the Hadamard transform. At the same
compression ratio, using the Haar transform over the Hadamard transform saves a
small degree of mean-square error.

Compression
Interframe adaptive encoding results in a compression of 0.70 to 1.70 bpp with
a %MSE ranging from 0.8% to 0.2%.

Spatial Domain

At maximum compressions, the Haar transform produces accurate
reconstructions of monochrome and color images. When the YIQ component coding is
utilized, color images retain much texture and detail. The greatest drawback of this
transform scheme is its effect on edges. Edges in the reconstructed image show a
decided blockiness.

Temporal Domain
Interframe compression yields approximately a 20%improvement in compression
when compared to two dimensional DCT, KLT, or Slant transforms.
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Aesthetic Appearance

Elements in the image are still discernable; however, the loss of resolution in
textured areas proves annoying to many observers. The effect produces an out of focus
appearance. Block errors along edges are definitely noticeable at maximum
compression rates.

Spectral Information :
YIQ component images perform as well as, or even better than, monochrome
images. The use of color may help to preserve texture and fine detail.
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Hybrid Techniques

Discrete Cosine Transform/Vector Quantization

Discrete Cosine Transform/Vector Quantization (DCT/VQ) [124][125][126]
involves using VQ on the DCT coefficients. It provides an opportunity to improve upon
the compression/quality achievable by either of the techniques individually. According
to rate-distortion theory, for a given amount of distortion, a lower rate can be obtained
by using vector, rather than scalar coding. Therefore, using VQ on the DCT coefficients
will provide better performance than any quantization scheme which treats them as
a set of scalars. Also, the statistics of the DCT coefficients can be modeled more easily
and with greater accuracy than the statistics of the image itself. This allows for more
efficiency in the design of the vector codebooks and less computation time in the
implementation of VQ. In some cases the higher sequency coefficients are dropped.
This reduces the dimension of the codevectors which significantly reduces the number
of computations needed to use VQ.

Compression

Images of 480 x 768 pixels digitized at 8 bpp have been encoded at 0.7 - 0.8 bpp
with absolute average error of 5 - 10 levels. This is not high quality. Another method
used 1.1 bpp to reproduce an image with no visible distortion. The SNR of DCT/VQ
was found to be 1 - 2 dB higher than DCT with scalar quantization for the same bit
rate.

Spatial Domain

The types of errors that occur are not easy to predict. Degradations due to VQ
would cause errors similar to those produced by using DCT at a low bit rate. The
degradations due to throwing away the high sequency coefficients are discussed in the
transform section.

Temporal Domain
Not Applicable.

Aesthetic Appearance
Low bit rates (below 0.5 bpp) produce some blockiness.

Spectral Information
Not reported.
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Discrete Cosine Transform/Motion Compensation

Television information contains temporal redundancy as well as spatial
redundancy. That is, a pixel of one frame is the same as the pixel in the same position

in the following frame and therefore need not be transmitted. The pixel description

of the earlier frame could be used. The compression techniques addressed thus far,
in this report, are directed toward reducing spatial redundancy and lossy compression
only in the spatial domain of a single frame. Conditional Replenishment is used, in
part, to remove temporal redundancy where corresponding pixels of one frame are the
same as a prior frame. In Conditional Replenishment the pixels are separated into
two groups, those pixels, called background pixels, which are the same as their
corresponding pixel in the previous frame; and those pixels classed as moving area
pixels, which are not the same as their corresponding pixel. Only the moving area,
changed pixels, and their locations are transmitted. This method can be improved by
sending an estimate of the displacements of groups of pixels, such as those that might
be representative of a moving object, to provide MC.

In hybrid transforms, interframe DPCM has been combined with MC, such as

DCT/DPCM. The approach used in DCT with interframe DPCM is shown in the
following figure.

THRESHOLD | _ - ADDRESS
COMPARE CODER

1 OUTPUT

MULTH
A - PLEXER |

ol

QUANTIZER

COEFFICIENT
-af—| FRAME
STORE
A
Cn
Cn
.

Figure 13: Hybrid interframe Transform/DPCM encoder.

The steps used in the Transform/DPCM interframe coding are

1. Partition the frame into blocks.

2. Take the two dimensional, spatial Discrete Cosine Transform of each
block to yield, for each block, a block of transform coefficients.

3. Predict the coefficients of the £” block of the present frame from the
corresponding coefficients of the k* block of the prior frame.

4. If the difference is less than a selected threshold, send a zero block, if it
is greater send the prediction error.
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Compression is achieved by redundancy removal and truncation of the coefficient
set using the DCT in the spatial domain. And by redundancy removal and lossy
compression using DPCM in the temporal domain. The use of MC can be added to the
above process in the following manner:

5. If the difference is less than a selected threshold, send a zero block.

6. If it is greater, search adjacent pixels or coefficients to define spatial
displacement between frames. A recursive algorithm using pixel
intensities or transform coefficients can be used, or a block matching
algorithm can be used to define a displacement vector.

7. Send the prediction error along with the displacement vector.

Compression

The applications of DCT/DPCM with MC, described in the recent literature, are
for video conferencing. The resolution of the video test image sequences are not
representative of NTSC video images. The motions are limited and more constrained,
representing video conferencing material content, showing individual or groups of
people engaged in normal conference or meeting activities. In comparison of
Transform/Conditional Replenishment without MC, the use of MC provides a 30% to
40% improvement in bit rate [127]. Achieving compressions, for "good" quality pictures
judged subjectively, of 0.1 to 0.4 bpp using adaptive DCT [128], and separate coding
of pulse-like components which cause slope overload in DPCM [129].

Spatial Domain
As compression become large, 0.1 bpp, block noise and granular noise become
more visible. Common distortions of transform coding.

Temporal Domain

The use of MC with DCT/DPCM produces fluctuations in luminance in the region
of moving edges. This effect has the appearance of mosquitoes, termed the mosquito
effect, and although not large in amplitude, can be very annoying. Moving areas, or
objects, cover stationary background in the direction of motion, and uncover
background away from the direction of motion. This produces a step change between
successive frames, resulting in pulse-like peaks using DPCM. The separate coding of
these peaks using Scalar Quantization (SQ) has been used to significantly reduce this
distortion [130].

Aesthetic Appearance

Block matching at the edge of the transform blocks, granular noise due to coarse
quantization, and the mosquito effect are concentrated in localized regions and
therefore are more visible than uniformly distributed errors. MSE are therefore not
representative of the subjective effects of the errors.

Spectral Information

Edge blockiness and the mosquito effect result in discontinuities and noise
fluctuations in chrominance as well as luminance, resulting in spectral errors in the
region of block edges and spectral noise in the region of moving edges.
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HIGH SPEED IMPLEMENTATIONS OF VDC ALGORITHMS

The literature on video data compression techniques consists mostly of papers
detailing the development or improvement of specific techniques. Usually, the paper
includes experimental results comparing the compression ratio and image degradation
of the new technique with previously existing ones. The experiments are generally
performed byimplementing the compression techniquesin goftware and applying them
to standard test images. The speed at which the compression can be performed is not
addressed as a major concern, and it is seldom discussed at all. Many papers,
addressing the practical implementations of VDC techniques for specific applications,
jumpimmediately to hardware implementations. Some of theimplementationsinvolve
designs of chips for specific tasks. Others use standard digital signal processing (DSP)
chips. Using today’s technology, VDC software written for a general purpose
microprocessor are not fast enough for real-time applications. Therefore, software
applications will not be considered any further.

Some representative examples of hardware implementations of high speed video
data compression techniques are presented in the Table of Hardware Implementations
at the end of this section. Most of these are implementations of predictive or transform
techniques. The applications for which the techniques have been implemented
generally involve television signals at video rates (30 frames/sec). In terms of pixel
rate, "video rate" covers a large range. The actual pixel rate depends on the method
of digitization as well as the frame rate. The highest standard throughput for digitized
video signals is 14.32 Mp/s for an NTSC signal sampled at 4 fsc. Other standards
produce rates in the range of 7.8 - 13.5 Mp/s. Some of the implementations can be
used at higher rates than were reported, but the developers did not try to do so because
the practical applications did not exist.

One-dimensional DPCM implementations have produced output of 3 - 5 bpp with
input rates of 10 - 14.3 Mp/s. Two-dimensional DPCM can compress an image down
to 3 -4 bpp at input rates as high as 10.7 Mp/s. Interframe DPCM has achieved
compression to 1.6 bpp at 10.6 Mp/s.

Separable N x N transforms can be implemented using a technique known as
row/column decomposition. This technique involves performing N 1 x N transforms,
a matrix transposition (accomplished by careful addressing of RAM), and another
N 1 x N transforms. Most of the popular transforms are separable and also have "fast"
implementations which reduce the number of arithmetic operations. These two
characteristics make simple, high speed hardware implementations feasible.

Hadamard transform techniques have been implemented to produce 2 bpp at 8.1
Mp/s and 0.5 bpp at 1.8 Mp/s. Also, a system using a pipeline fast Hadamard transform
configuration has been implemented at 128 Mp/s [131].

DCT techniques can achieve 1.6 bpp at 10.4 Mp/s and 0.82 bpp at 9.7 Mp/s. There
have also been DCT chips produced which perform the two-dimensional transform at
14.3 Mp/s and above. A chip architecture toimplement DCT at data rates up to 27 Mp/s
(the combined video rate of component coded television, CCIR Rec. 601) has been
proposed. In neither of these cases was a quantizer for the transform coefficients
included, so neither is a complete compression implementation.
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A proposed technique performs discrete unitary transforms (DCT, DFT, etc.)
optically with incoherent light by using acousto-optic spatial modulators and a CCD
camera for detection and storage [132]. This technique can perform two-dimensional
transforms of entire images at "video rate” since the speed is limited by the CCD
camera. Performing many smaller transforms would require many modulators and
light sources in parallel. Therefore, this implementation would be most practical for
performing transforms on large blocks or entire images. With the appropriate
bit-allocation schemes, using larger blocks can produce better compression according
to information theory. This technique is not a focal plane implementation since
row/column decomposition is used. The second one-dimensional transform uses the
output of the first one-dimensional transform which is fed back from the camera to a
spatial modulator.

Optical transforms can be performed using the electro-optical spatial modulators
and CCD camera if the transform is separable. Current parallel scan architecture of
the HHVT system does limit the usefulness of this approach if large blocks are to be
considered. -

An edge detection technique that produces a 1 bpp edge map of the image was
implemented at 10 Mp/s. Other types of filters have been developed that run at clock
rates of 30 MHz and above and process images at rates of 5 - 10 Mp/s.

A parallel processing implementation of BTC has been proposed. It is based on
early 1980’s technology and would compress about 0.5 Mp/s per processing element
(PE). The output would be 1.625 bpp. With today’s technology it is likely that such a
technique could be implemented at a higher data rate, thereby allowing a high-speed
implementation without an unreasonable number of PEs. :

A hardware implementation of a vector quantization technique is planned. It
would operate at 11.8 Mp/s. Noindication was given of the planned compression ratio.

Recently, experimental work has been done on the compression of HDTV signals
which use about five times the bandwidth of conventional television signals. Various
compression techniques have been developed. None of these techniques attempt digital
compression at the full Nyquist rate. They use sub-sampling or analog filtering to
reduce the pixel rate before applying digital compression algorithms. A previous pixel
DPCM coder has been developed that operates at 16 MHz and produces 5 bpp. Another
DPCM technique has been demonstrated at 16.2 Mp/s [133][134].
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USER REQUIREMENTS CASE STUDIES

Background
Baseline Near-term HHVT Video System

Some of the significant specifications of this system are

ARl A o

Monochrome only.

1024 x 1024 pixels maximum resolution of the sensor.

Sub-framing capability with pixels addressable in 8 x 8 blocks.

8-pixel parallel scan format.

80 Mp/s (8 x 107 pixels/second) maximum sensor pixel addressing rate, i.e.
(pixel/frame)frames/sec) < 8 x 10",
Therefore, the maximum frame rate at full (1024 x 1024) resolution is
(8 x 107 / 220) = 76.29 fr/s. The resolution of each frame can be traded off for
a higher frame rate.

Each pixel can be codedin 1, 2, 4, or 8 bits/pixel.
The maximum data output rate from the sensor is 640 Mbps.
(1 Mbps = 10° bits per second)

512 Mb (229 bytes) dynamic RAM with data transfer rate of up to 1160 Mbps.
99 GB magnetic tape recorder with data transfer rate of up to 240 Mbps
(MIL-STD-2179).
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Communications Link Capabilities

The following downlink data rates are derived from "An Investigation of Available
Communications Link Capabilities for Space Experiments Employing HHVT" which
was submitted by Analex Corporatlon on February 1, 1988. This report contains more
detailed explanations of the scenarios conmdered

1. Short Transmissions

If the data is transmitted over a penod of tlme comprising a small fractlon (less
than 1/10) of an orbit, it should be scheduled for a section of the orbit for which there
is TDRSS coverage. In this situation the best and worst case downlink rates for the
various vehicles are

A. Space Shuttle

1. Best case - no time sharing _ 48 Mbps
2. Worst case - 5-way time sharing 9.6 Mbps
B. Spacelab / Space Shuttle
1. Best case - no time sharing or 48 Mbps
multiplexing ‘
2. Worst case - 2-way time sharing and 1.5 Mbps

16:1 multiplexing
'C. Space Station Freedom

1. Best case - time sharing where HHVT 50 Mbps
has the necessary block of time
reserved

2. Worst case - 6:1 multiplexing 7.0 Mbps

D. USLab / Space Station Freedom

1. Best case - time sharing where HHVT 75 Mbps
has the necessary block of time
reserved

2. Worst case - 16:1 multiplexing 4.0 Mbps
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2. Long Transmissions
If the data is to be transmitted over a period of time comprising a significant
fraction of an orbit or more, the coverage of the carrier by TDRSS, as well as antenna

blockage, must be included in the link availability calculations. In this situation the
best and worst cases are:

A. Space Shuttle
1. Best case - 90% coverage 43.2 Mbps
2. Worst case - 5-way time sharing, 2.4 Mbps
52% coverage, rendezvous activity
B. Spacelab / Space Shuttle
1. Best case - 90% coverage 43.2 Mbps
2. Worst case - 2-way time sharing and 0.375 Mbps
16:1 multiplexing, 52% coverage,
rendezvous activity
C. Space Station Freedom

1. Best case - 6-way time sharing, 856% 7.1 Mbps
coverage

2. Worst case - 6:1 multiplexing, 85% 6.0 Mbps
coverage

D. USLab / Space Station Freedom
1. Best case - 10-way time sharing, 85% 6.4 Mbps
coverage
2. Worst case - 16:1 multiplexing, 85% 3.4 Mbps
coverage

Experiment #102 - Solid Surface Combustion

General Description of Experiment and Image Content
A piece of ashless filter paper is ignited via a hot wire in an O/N; environment
and burns. The propagating flame is recorded as it moves across the paper.
Information to be Derived from the Video Record
Edge of flame, color.
Video System Requirements
1. 2 views, color, 256 intensity levels
9. Resolution: measure dimensions of 0.02 cm to within 10% in a field of view
of 10 cm x 5 cm — 5000 x 2500 pixels
3. Frame rate: 64 fr/s for 3 min
4, Runs per flight: 3
Required Data Acquisition and Storage
( 64 frames/second )( 180 seconds ) = 11,520 frames
( 11,520 frames X 5000 x 2500 pixels/frames ) = 144 Gigapixel
( 144 Gigapixel X 3 Byte/pixel ) = 4.32 x 10" B required storage/view/run
(4.32 x 10'' B )(3 runs)2 views) = 2.59 x 10" B required storage/flight
Baseline Data Acquisition and Storage
The baseline sensor will be monochrome only, with a maximum resolution of 1024
x 1024 pixels.
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( 64 frames/second )( 180 seconds ) = 11,520 frames
(11,520 frames }( 1024 x 1024 pixels/frame ) = 12,080 Megapixels
(12,080 Megapixels )( 1 Byte/pixel ) = 1.208 x 10" B storage/view/run

This is much more data than can be stored in the dynamic RAM, so magnetic
tape storage is needed. The use of the magnetic tape recorder imposes a maximum
data storage rate of 240 Mbps. The possible approaches to compressing the data for
storage will be discussed later. In the meantime the data storage can be calculated
as follows.

(240 Mbps )(180 8) = 43.2 Gb = 5.40 x 10° B storage/view/run
(5.40x 10° B X3 runs) = 1.62x 10" B storage /view /flight

This total is less than the capacity of one reel of magnetic tape.

Required Downlink Rate

The data from each run must be transmitted within 12 hours.

(4.32 x 10" B/view X 2 views ) =8.64 x 10'' B = 6912 Gb
(6912 Gb )/ [(12 hrX3600 sec/hr)] = 160 Mbps

Baseline Downlink Rate e

The data from each run must be transmitted within 12 hours.
(43.2 Gb/view X 2 views ) = 86,400 Mb
(86,400 Mb )/ [(12 hr)X3600 sec/hr)] = 2.0 Mbps

Data Compression Requirements —— ————

The baseline system without data compression falls short of meeting the
acquisition and storage requirements of this experiment in a number of areas.
Therefore, video data compression must be considered. Since the baseline system does
not provide color information, the remaining important features to be derived from
the image are the intensity of the flame and its edges. Therefore, any compression
technique to be considered should preserve, as much as possible, edge information and
edge location.

The first area in which the baseline system is inadequate is resolution. The limit
of 1024 x 1024 pixels is below the required resolution by a factor of 5 in one dimension
and 2.5 in the other. An optical system containing Fourier transform optics
implemented in front of the sensor might be able to use the 1024 x 1024 available
pixels to record high spatial frequency information at the expense of low frequency
information in order to allow the detection of objects beyond the original resolution of
the sensor. However, this type of system does not seem to be very practical for this
experiment since low frequency information is also necessary. An alternate approach
is to reduce the field-of-view to 2 cm x 1 cm combined with electro-mechanical tracking
of the image. This would permit direct use of the RAM.

The second issue involves the storage of the video data. As mentioned above, the
amount of data which needs to be stored precludes the use of dynamic RAM for storage.
Even using the RAM as a buffer for magnetic tape storage will not suffice. Therefore,
the data cannot be stored at a rate exceeding the maximum data transfer rate of the
magnetic tape unit, 240 Mbps. The sensor, however, is producing data at the rate of

(1,048,576 pixels/fr X 64 fr/s ) = 67.1 Mp/s.
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In order to take full advantage of the data acquisition rate of the sensor, all of
the data produced by the sensor must be compressed to 240 Mbps in real time. In
other words, the image must be compressed from 8 bpp to (240 /67.1) = 3.58 bpp at
aninput rate of 67.1 Mp/s. The entropy of the experiment images is expected to exceed
3.58 bpp during the time of experiment execution. It may be possible to use a lossless
technique. However, without specific knowledge of the image statistics, it is not
possible to determine if the RAM (with a storage capacity of 1/2% of the total data
storage) can be used as a buffer for a lossless technique. Therefore, an analysis of the
choice of a lossy technique follows.

The specifications of the compression technique are high speed, relatively low
compression, implemented between the sensor and the tape recorder. These
requirements point to using a straightforward technique that can be implemented in
the parallel pipeline. As discussed above, two-dimensional predictive and transform
techniques are appropriate.

Predictive techniques tend not to accurately preserve the location of edges
because of slope overload. Also, the output bit rate of transform techniques can be
adjusted more easily than that of predictive techniques. Therefore, a transform
technique is the most appropriate for this application. It can provide the necessary
compression in real time while preserving the location of the edges fairly well.

An alternate approach would be to use a sub-frame of 800 x 800 pixels with a
reduced field-of-view to maintain resolution. This would require electronic or
electro-mechanical tracking of the burning region, either of which would be technically
feasible.

The third area needing compression is downlink transmission. The downlink
time will cover many orbits, so the "long transmission” bit rates should be used in this
analysis. Although the baseline system requires a downlink rate of only 2.0 Mbps,
running this experiment on a Spacelab mission (whichis where itis presently proposed
to run) might require significantly lower data rates, depending on the requirements
of the other experiments. In the worst case the data would have to be compressed by
an additional factor of 5.33 to 0.375 Mbps (0.67 bpp). This compression can be done
at a comparatively slow downlink rate (1 Mp/s) which will allow more complex
techniques to be considered.

A significant amount of compression could likely be obtained from interframe
prediction, with or without motion compensation.

Based on a comparison of the above techniques, it is recommended that the
two-dimensional fast Hadamard transform be considered to achieve the compression
from 8 bpp to 3.58 bpp. Toachieve the additional compression of 5.33itis recommended
that interframe prediction in the transform domain without motion compensation be
used, followed by run-length entropy encoding.
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Experiment #228 - Bubble-in-Liquid Mass Transport
Phenomena

General Description of Experiment and Image Content
Abubble of gas is injected into a liquid under controlled pressure conditions. The
pressure is adjusted to maintain an unstable equilibrium between the bubble and the
surrounding liquid. At some point the pressure is increased, and the bubble begins to
dissolve.
Information to be Derived from the Video Record
The precise diameter of the bubble is measured in each image. The diameter
measurement is resolved to two microns.
Video System Requirements
1. 2 views, monochrome, 256 gray levels.
2. Resolution:
A. Desired
Resolve bubble diameter to 0.002mm in a field of view of
4 mm x 4 mm (obtained by zooming from full field of 1.5 cm x 1.5 cm)
- To accomplish this, we need 2000 x 2000 pixels.
B. Acceptable
1024 x 1024 pixels (baseline maximum resolution)
3. Frame rate: A. Injection 1000 fps for 18 (Desired)
100fps for 1s (Acceptable)
B. Equilibrium 1 fps for 300 s [480 sec]*
C. Initiation 1000 fps for 1s (Desired)
100fps for 18 (Acceptable)
D. Dissolution 1 fps for 300 s [1800 sec]*
* from Experiment
Timeline
4. Runs per flight: 4

Required Data Acquisition and Storage
A. Desired
(1000 fr/s (28 )+ (1fr/s )(2280s) = 4280 fr
(4280 fr )( 2000 x 2000 p/fr ) = 17,120 Mp
(17,120 Mp )(1 Byte/p) = 1.71 x 10" B req. storage/view/run
(1.71x 10" B X2 viewsX4 runs) = 1.37 x 10'' B req. storage/flight
B. Acceptable
(100fr/s X(28)+(1fr/s)(2280s8) = 2480 fr
(2480 fr )( 1024 x 1024 p/fr) = 2.60 Gp
(2.60 Gp X 1 Byte/p ) = 2.60 x 10° B req. storage/view/run
(2.60 x 10° B )(2 views)(4 runs) = 2.08 x 10" B req. storage/flight
Baseline Data Acquisition and Storage
Since the sensor is being used at full resolution, the frame rate is limited to 76.29
fps (see Background above).

82

il

[ |

LR



Y

(7629 fr/s (28 )+ (1fr/s)(22808) = 2433 fr
(2433 fr X 1024 x 1024 p/fr) = 2.55 Gp
(2.55 Gp )X 1 Byte/p ) = 2.55 x 10° B storage /view /run
Since the capacity of the RAM will be
onl]f 512 Mb, storage on magnetic tape RAM in use
will be required. Although the data rate
of the tape drive will be limited to 50
240 Mbps, using the RAM as a buffer will 4©
allow all of the above data to be captured t

hd 20

at thtlamﬁlven frame rates, since the

76.29 s capture is for just one second e .

at a time. Therefore, the storage in the 5 e

buffer only reaches about 50 Mbbefore the Time (se0s.)

input rate drops to 1 Mb/s, and the buffer

can be emptied over the next few seconds, Figure 14: Dynamic RAM buffer capacity for
as shown 1n Figure 14. Experiment #288

The storage capacity required for this experiment is
(2.55 x 10° B }(4 runs) = 1.02 x 10'° B storage /view /flight.
This total is within the capacity of one reel of magnetic tape.
Required Downlink Rate
Approximately 1 fps (almost real time) for up to 2 minutes for ground control
(position, zoom) of sensor.
A. Desired
(1 fr/s X( 2000 x 2000 p/fr) = 4.0 Mp/s
(4.0 Mp/s (8 bpp ) = 32.0 Mbps

B. Acceptable
(1fr/s )(1024 x 1024 p/fr) = 1.049 Mp/s
(1.049 Mp/s (8 bpp ) = 8.39 Mbps

Baseline Downlink Rate
(1 fr/s X 1024 x 1024 p/fr) = 1.049 Mp/s
(1.049 Mp/s (8 bpp ) = 8.39 Mbps

Since the requirements are for almost real time downlink for a short period of
time, we will assume the downlink is taking place during a period of time in which
the carrier vehicle (Space Shuttle or SS Freedom) has TDRSS coverage.

Data Compression Requirements

The baseline HHVT system almost meets the video image acquisition and storage
"acceptable” requirements of this experiment without the need for data compression.
The only exception is the reduction in frame rate from 100 fps to 76.29 fps for the
injection and initiation phases of the experiment. Since the frame rate is limited by
the pixel addressing rate of the sensor, not much can be done about it.

The downlink bpp requirement varies greatly depending on the vehicle and the
number of other experiments sharing the Ku-band link. Most likely, no compression
will be necessary for the downlink. In the worst case the image might have to be
compressed to 1.5 Mbps, or 1.43 bpp. Since the only feature of interest in the
transmitted image is the boundary of the bubble, a reasonable approach to compression
is to transmit only the edges. This can be done by using an edge detection technique
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and transmitting only the locations of pixels classified as edges, with or without the
intensity values. A technique of this type will easily be able to achieve the necessary
compression ratio which is less than 6:1.

There are several techniques that could be very useful for this experiment. Part
of the synthetic highs technique [135] can be used by extracting and transmitting only
the edge information. The method of Robinson [136] uses two-dimensional directional
mask operators to extract edges. The edge pixels are then chain coded for transmission.
Although either method would probably be sufficient for this experiment, the latter
one is more advanced and will likely produce a better edge picture at a lower bit rate.
Both of these techniques involve filtering by convolution which uses many
multiplications per pixel, but high-speed compression is not required for downlink
transmission because the input rate is only 1.05 Mp/s. Another technique that will
provide high-speed edge detection involves the intensity-dependent spatial summation
(IDS) operator [137]. This technique is being implemented in hardware for Langley
Research Center [138].

Based on a comparison of the above techniques and projected development status,
itis concluded that a two-dimensional directional mask operator or IDS operator should
be used to extract edge maps for compressed data transmission.

135. Schreiber, W.F., Kna[:;:, C.F., Kay, N.D., "Synthetic Highs --An Experimental TV Bandwidth
Reduction System,” ournal of SMPTE, vol. 68, pp. 525-537, August 1959.

136. Robinson, G.S., "Detection and Coding of Edges Using Directional Masks," Proceedings of the
SPIE (aiso in Optical Engineering), vol. 87, pp. 117-125, 1976.

137. Cornsweet, T.N, and Yellott, Jr., J.1., "Intensity-Dependent Spatial Summation,” Journal of the
Optical Society of America A, vol. 2, pp. 1769-1786, October 1985, ,

138. Hilgclst F.0., "Local Intensity Adaptive Image Coding,” NASA Data Compression Workshop,
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Experiment #230 - Nucleate Pool Boiling

General Description of Experiment and Image Content
Freon is heated locally by means of a large current passed through a thin gold
coating on quartz. At some point the freon begins to boil. Vapor bubbles form, grow,
and depart from the surface.
Information to be Derived from the Video Record
Nucleation site density
Nucleation frequency at a given site
Bubble shape
Bubble growth, collapse, departure, motion after departure
Existence of fluid micro-layer underneath bubble
Video System Requirements
1. monochrome, 10 - 20 graylevels (we will assume 16 levels since this would
take full advantage of 4 bpp) '
9. Resolution: resolve an object of dimension 0.005 inch in a field of view of
9.5 inch x 5 inch - To accomplish this, we need 500 x 1000 pixels. (We will
use 512 x 1024.)
3. Framerate: First 6 sec(avg.): 1000 fps desired, 100 fps acceptable. Next
120 sec: 10 fps
4. Runs per flight: 9
Required Data Acquisition and Storage
A. Desired
(1000 fr/s X(68) + (10 fr/s )(120s8) = 7200 fr
(17200 fr X 1024 x 512 p/fr ) = 3.77 Gp
A 16-gray-level image requires 4 bpp (0.5 bytes/pixel).
(3.77 Gp )( 0.5 bytes/p ) = 1.89 x 10° B req. storage/run
(1.89 x 10° B )@ runs) = 1.70 x 10'° B required storage/flight
B. Acceptable
(100 fr/s (6 8 ) + (10 fr/s X( 120 8) = 1800 fr
(1800 fr X 1024 x 512 p/fr ) = 944 Mp
(944 Mp )( 0.5 bytes/p ) = 4.72x 10°B req. storage/run
(4.72 x 10° B X9 runs) = 4.25 x 10° B required storage/flight
Baseline Data Acquisition and Storage
Sub-imaging will allow the sensor to produce 152.6 fps since each frame is only
0.524 Mp.
(152.6 fr/s X 68)+(10fr/8)(1208) = 2115 fr
(2115 fr X( 1024 x 512 p/fr ) = 1109 Mp
(1109 Mp X 0.5 bytes/p) = 5.55 x 10° B storage per run
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Since the capacity of the RAM will be
onllf' 512 Mb, storage on magnetic tape RAM in use
will be required. Although the data rate
of the tape drive will be limited to a0
240 Mbps, using the RAM as a buffer will .
allow all of the above data to be captured :'80
at the given frame rates, since the r2o
76.29 s capture is only required for eo
6 seconds. Therefore, the storage in the s
buffer only reaches about 300 before Time (ssca.)
the input rate drops to 5 Mb/s, and the
buffer canbe emptied over thenext several  Figure 15: Dynamic RAM buffer capacity for
seconds, as shown in Figure 15. Experiment #230

(5.55x10°B X(9runs) = 4.99 x 10° B storage/flight

This total is less than the capacity of one reel of magnetic tape.

Required Downlink Rate

No downlink requirements.

Baseline Downlink Rate

No downlink requirements.

Data Compression Requirements

The baseline HHVT system meets the video imaging "acceptable” requirements
of this experiment without the need for data compression. The only area in which
there is room for improvement is the frame rate. Although the "acceptable” frame rate
is exceeded, the "desired"” frame rate of 1000 fps cannot be approached. Since the frame
rate is limited by the pixel addressing rate of the sensor, only an optical compression
technique that is implemented in front of the sensor could help. This technique would
have to reduce the number of pixels required to achieve the necessary resolution,
thereby allowing the sensor to trade fewer pixels per frame for a higher frame rate.

300
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INTEGRATION OF VDC INTO HHVT SYSTEM

Since the goal of the HHVT system is to provide as much scientific information
as possible, video data compression (VDC) should preserve the salient features of the
image. In addition, the HHVT system must meet storage and downlink limitations.
Therefore, we need to consider two stages of compression, one before storage on tape
and one for downlink. Whenever the data acquisition rate is above the magnetic tape
storage rate (30 Mb/s), the data should be initially compressed only enough so that it
can be stored on tape. If further compression is required for downlink transmission,
a second compression algorithm can be applied. Finally, much of the compression,
especially before storage, must occur in real- or near-real-time. Hardware
implementations of VDC algorithms deserve serious consideration.

Several features of the baseline HHVT system’s design suggest prominent points
for the integration of VDC. HHVT will employ eight parallel lines out of the sensor.
This architecture suggests the use of a parallel processing architecture, especially in
the first stage of compression before storage. If the sensor’s output is a nominal
80 Mp/s, each line could process at 10 MHz. This is within the capability of current
hardware video processing technology.

Some current hardware-based VDC implementations involve predictors like
DPCM and DM. An predictive algorithm which has much promise for VDC is the
Lempel-Ziv-Welch algorithm [139][140]. While the algorithm requires buffering for a
variable output bit rate and a code table [141], it can provide either lossy or lossless
compression. Good quality images can be reconstructed at 1.24 bpp. Using DCT
coefficients, the LZW algorithm yields compression ratios of 16:1[142]. Linear filtering
(convolutions using DFTs) occurs at high processing speeds through the use of DSPs.
Also, DSPs have evolved into graphics system processors such as Texas Instruments’
TMS34010 and 34020 devices, National Semiconductor’s Advanced Graphics Chip Set,
the AMD 95C60, the Intel 82786, and Hitachi’s 63484, among others. These processors,
operating at rates up to 60 MHz, are optimized to perform graphic and image
processing functions. These processors perform block operations, such as matrix
rotations, in a single operation. They also work with floating point number accuracy.
Another area of great potential for HHVT is the success with application specific
integrated circuits or ASICs. ASICs are semiconductor devices, often in GaAs or
CMOS, which use basic logic elements, special memory cells, adders, and multipliers
integrated onto a single die or chip [143]. The processing speed of these devices is
often the fastest for any particular hardware implementation of a VDC algorithm.
DPCM, DCT, MC, and DFT operations are a few of the algorithms which have been
successfully implemented.

The following two sections examine some of the unique VDC requirements of
HHVT. They also address in more detail the implementation of VDC into the system.
The first section examines electronic, or hardware, implementations. The second
section examines the use of optical filtering to improve high spatial frequency response
and edge preservation in VDC.

139. Ziv, J. and Lempel, A., "A Universal Algorithm for Sequential Data Compression," IEEE
Transactions on Information Theory, vol. IT-23, No. 3, pp. 337-343, May 1977.
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140. VYIelch, IT;STP' "A Technique for High-Performance Data Compression,” Computer, pp 8-19,
une

141. Nelson, Mark R., "LZW Data Compression,” Dr. Dobb’s Journal of Software Tools and
Programming Techniques, vol. 14, no. 10, pp. 29-36, October 1989.

142. Lewis, Jr. H. Garton and Forsyth, William B., "Hybrid LZW Compression,” Proceedings of the
NASA Langle ;ponsored International Workshop on Visual Information Processing for
Television and Telerobotics, Williamsburg, Virginia, May 1989.

143. Pirsch, Peter, "VLSI Implementation for Visual Communications - Tutorial Short Course

Notes," SPIE Symposium on Optical and Optoelectronic Engineering, vol. T5, November 1988.
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Electronic Implementations

The baseline system’s sensor will have an 80 Mp/s output rate. Hardware
implementations are likely to require some form of parallel processing. DPCM using
a one-dimensional predictor can be implemented in the parallel pipeline of the baseline
system. Eight processors, each operating at 10 Mp/s, can compress the eight parallel
bit streams emerging from the sensor. However, as indicated in the discussion of
predictive methods, vertical edges will be poorly represented by a horizontal predictor.

It may be possible to implement a two-dimensional predictor for seven out of the
eight bit streams by delaying each bit stream by one pixel more than the stream above
it. Doing so will allow the current predictor to use the pixel that was originally directly
above the current pixel. This also could be implemented at 10 Mp/s per processor.
Three-dimensional predictive schemes clearly cannot be implemented in the parallel
pipeline since they require an entire frame to be stored in RAM for use by the predictor.

The Hadamard transform, although it produces suboptimal compression when
compared to the DCT, has a great advantage in its speed of implementation. This is
because the computation of the transform involves only additions without
multiplications. A pipelineimplementation of a two-dimensional Hadamard transform
can operate at very high rates. The speed of such an implementation is limited by
whichever is slower: one addition operation or the access time of the RAM. The RAM
stores the matrix of the intermediate results produced by the first stage of
one-dimensional transforms. Two one-dimensional transforms determine the
two-dimensional transform. With today’s high-speed electronics, it should be possible
to implement a Hadamard transform processor in the parallel pipeline of the HHVT
gystem. It would perform an 8 x 8 transform, taking as input 8 groups of 8 parallel
pixels, and producing 8 groups of 8 transform coefficients. Thus, it could process the
image at a data rate of 80 Mp/s using the system clock rate of 10 MHz. The delay in
the line for computation of the transform would be about 10 clock periods (1 ps).

Two-dimensional DCTs can be performed on parallel data quite easily. However,
total throughput is usually no higher than "video rate". Therefore, the transforms
cannot be implemented in the parallel pipeline when the combined data rate is much
above the conventional "video rates”. One possibility for high throughput involves the
use of an analog CCD device that performs a one-dimensional DCT in 100 ns (10 MHz
rate) using parallel I/O [144]. Use of this device in the parallel pipeline would require
D/A and A/D conversion. ) -

An advantage of transform and some other block techniques is that each block
is processed and compressed independently. Once the video data is stored in RAM,
many processors can be used in parallel to perform the compression. Therefore, as
long as the implementation is fast enough that one block can be compressed in the
time that one frame is acquired, real time processing can be achieved by using the
appropriate number of processors in parallel.

Block Truncation Coding is performed on each block independently. Therefore,
it can be implemented in parallel by using multiple processors. However, the amount
of compression is not easily adjustable.
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The HVS compensation schemes do not appear to have hardware
implementations. However, there are DSP implementations which perform linear
filtering operations at very high speeds. Compression schemes based on simple edge
detection and coding would utilize these devices. With the image broken down into a
few sub-images, multiple processors would perform the edge detection. This has been
done for a very simple 2x2 edge detector. The high speed GSP chips planned for the
near future (TMS 34020) should implement more effective filters at reasonable speeds.
Implementations of the complex, high-compression HVS schemes at high speeds seem
beyond the capabilities of current hardware technology. '

In most cases the experimenter would probably want a copy of as much
information as possible for detailed analysis in addition to the compressed, transmitted
image. Therefore, whenever the data acquisition rate is above the magnetic tape
storage rate (30 Mb/s), the data should be initially compressed only enough to be stored
on tape. If further compression is required for downlink transmission, the data can
be read into RAM, the image can be reconstructed if necessary, and a second
compression algorithm can be applied. Therefore, we need to consider two stages of
compression, one before storage on tape and one for downlink,

The first stage must be able to handle input data rates as high as 80 Mp/s in the
parallel pipeline configuration. The output rate should be 30 Mb/s which means the
algorithm must be able to produce a fixed, but adjustable, bit rate in the range of
3 - 8 bpp. Within these specifications, we should attempt to minimize degradations
of the image quality. ,

DPCM techniques can run at a high enough rate. However, the simple algorithms
do not handle edges well at lower bit rates (even a two-dimensional predictor would
have to revert to one-dimension for one line out of eight in the pipeline). More complex
algorithms such as adaptive predictors may provide sufficient image quality.

Transform coding techniques can produce good quality reconstructed images
when the bit rate is 3 bpp or above. Even edges are fairly well reproduced. The
Hadamard transform and DCT are easily implemented in the parallel pipeline at 10
MHz. : :

Of the techniques which produce high-quality images, the fast Hadamard
transform is the easiest to implement. However, if a non-uniform bit allocation scheme
is used, the bit rate will vary from line to line in the parallel pipeline. This will require
a multiplexer that can adjust to the bit allocation scheme. A uniform bit allocation
scheme is also possible, but it will result in lower image quality.

The compression for downlink can generally be done at a much lower pixel rate
than the first stage. Also, the output bit rate will be lower. At lower bit rates, less
information is preserved. Therefore, it becomes more important to tailor the
compression technique to the specific type of information which must be preserved.
As a result, a programmable system may be necessary. This would allow for flexibility
in the choice of compression method to match the experimenter’s needs. The reduced
speed requirement should make such a system possible. The needs of most of the
experimenters can probably be met with a short list of techniques. A good edge
detection technique will have to be included.
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144. Chiang, A.M., "A Video-Rate CCD Two-Dimensional Cosine Transform Processor," Proceedings
of the SPIE, vol. 845, pp. 2-5, 1987.
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Optical Implementations

Speed is the main advantage of coherent optical transform processing. The entire
image is transformed at the speed of light. Filtering operations in the transform
domain are done continuously and are used in a system with any subsequent frame
rate without synchronization.

A coherent light source is required for an optical method which uses Fourier
transforms of monochromatic images. Since the Fourier transform is independent of
spatial position, optical Fourier transforms are the most practical for image processing
tasks such as identification and classification. However, image compression
algorithms involving only spatial-frequency filtering are also easilyimplemented using
Fourier optics.

Spatial filtering is used to vary the gpatial bandwidth prior to the digitizing
process. A He-Ne (helium-neon) laser source is used with a dibutyl-phthalate liquid
gate, mixing with light from the image to produce a coherent light source. A Fourier
transform lens forms the spatial Fourier transform of the image at the transparency.
Various obstacles at the focal plane (of this first lens) result in spatial filtering. The
image is retransformed by a second Fourier transform lens. This spatially filtered
image, at the focal plane of a video camera, is then digitized and digitally compressed
[145]. ,

This filtering process has been used with Delta Modulation (DM) by Eichmann,
et al [146][147]. A computer simulation also verifies significant compression when
this technique is used in conjunction with a DCT encoder. The optical technique
reduceshigh frequency distortions which manifest themselves as edge blockiness[148].
Consequently, this focal plane process increases the resolvable detail in the compressed
image. It serves a function similar to pre-emphasis employed in broadcast television.

Even if the images are not produced with coherent light, coherent optical
processing can be performed through the use of optically accessible spatial light
modulators. Incoherent light initializes a modulator, which converts the light to a
coherent beam of light. This coherent light is proportional in intensity to the original
image produced with incoherent light. The result is an equivalent image consisting
of coherent light, which can then be processed using Fourier optics.

Pockel’s Readout Optical Modulator (PROM) is one device that can modulate
spatial light at and above video rates. It has a maximum resolution of 500 lines/mm
and is typically 25-30 mm in diameter. PROM can obtain a 10,000:1 contrast ratio.
However, PROM requires blue light for writing and red light for reading. In situations
where image information is contained in lower frequency light, such as a flame
experiment where image information occurs in the red and infrared bands, input could
become a problem.

Optical techniques may be well suited to certain applications. However, they are
not easy to implement and may be inappropriate for all situations where a coherent
light source isnot available. Although a modulator can be used to convert anincoherent
light source to a coherent light beam, the spectra of light from certain experiments
studied in this report exceed the useful range of the modulator. It may be feasible to
integrate this technique into some experiments using incoherent light sources within
the operating range of the modulator. Because of this, caution is required when
considering a general application of optical, spatial filtering.
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CONCLUSIONS

The following conclusions were developed while studying the literature:
1. Three experiments requirements were studied in detail. The three

experiments studied were Solid Surface Combustion, Bubble-in-Liquid Mass -

Transport Phenomena, and Nucleate Pool Boiling. The results of the investigation
conclude that video data compression approaches for microgravity space experiments
are experiment peculiar in requirements and no one single approach is universally
optimum. :

2. It is shown, for the experiments studied, required data compression is
separable into two approaches, the first to limit data rates for storage, and the second
to reduce data rates for transmission.

3. Hardware implementations for high resolution and/or high frame rate
experiment requirements, and real time compression are currently limited, by
technology, to methods that can be implemented using parallel processing, digital
filtering, decomposition, and tree searches.

4. In general, based on this survey and the state of the art in image coding,
transform algorithms are preferred over predictive methods. Of the transform
methods, the Discrete Cosine Transform is the optimal method. It provides the most
efficient compression.

5. For HHVT applications, the DCT is the one method which can best meet the
stringent compression requirements, and maintain image fidelity. Several fast
algorithms been developed [149][150]. These algorithms perform at least six times
faster than the Fast Fourier Transform, and these algorithms directly lend themselves
to hardware implementations.

6. Coupled with a motion compensation or block matching algorithm in the
temporal direction, the DCT is currently the best method for high compression,
interframe coding.

7. Although theoretically attractive, no approach could be identified for focal
plane processing alone, that could be implemented with state of art hardware. Still,
optical techniques are advantageous when used with digital compression to help
maintain edges and high frequency detail.

149. Chen, W., Smith, C. H., and Fralick, S., "A Fast Computational Algorithm for the Discrete
?ggi?ne Transform,” IEEE Transactions on Commaunications, vol. COM-25, pp. 1004-1009,

150. Lee, B. G., "A New Algorithm to Compute the Discrete Cosine Transform,” IEEE Transactions
on Acoustics, Speech, and Signal Processing, vol. ASSP-32, pp. 1243-1245, 1984.
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RECOMMENDATIONS FOR FURTHER STUDY

1. User controlled, dynamic image processing which provides image
enhancement, reconstruction, and manipulation. These techniques could be used to
offset the perceived degradations in compressed images. They will also aid
investigators in the analysis of video data. Such techniques also provide needed
functions in a telescience environment. This development will help to make the HHVT
system a more useful, and easier to use, system. Investigators can use these methods
to control the operation of the HHVT system.

2. A detailed study of experimenters’ requirements.

3. A study to define specific spectral requirements.

4. Continued study of promising compression techniques. For example, at the
time of this report, great advances are being made of fractals, and other shape
matching, algorithms. These techniques provide several orders of magnitude
improvement in compression. Also, current Human Visual System approaches will
attempt to identify crucial elements to maintain the perception of a high fidelity
image. These techniques, however, need further refinement of both algorithms and
implementations to be useful in the HHVT system.

5. Further study of optical processing techniques for high data rates. We
addressed the use of optical techniques primarily as a pre-processing step to digital
encoding of the image. Implementation of purely optical techniques has been
difficult and costly. In the past, such systems’ performances have been
disappointing. Still, since images ultimately start with light, an optical process
seems to be the ideal method for image compression. Recent literature indicates a
renewed effort in this area. Of special interest is the renewed effort to model and
develop focal plane processors based upon human perception, neural responses, and
pattern matching.

6. Development of standard methods to evaluate and compare digital image
compression algorithms. Such standards should be "blind" to specific operating
system and computer hardware advantages. Ideally, all algorithms would be tested
in hardware "in situ”". However, associated development time precludes this, and
one should consider software-based benchmark comparisons. Also, one should
respect the proprietary concerns of algorithm developers.
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APPENDIX 1: BIBLIOGRAPHY DATABASE

Thebibliography, resulting from the Task 2.0 study, was prepared using R:BASE
System V software by Microrim Inc. for the MS-DOS operating system. The database
files, the applications files, and the program files are contained on the disk provided
with the this report and represents the required deliverable for this study.

The R:BASE files containing the list of articles are ARTICLE?.RBF. The R:BASE
application for entering articles and printing the bibliography list is contained in
IO0IO.APP, IOIO.API, and IOIO.APX.

Load R:BASE. At the R:BASE Main Menu select

(1) R:BASE command mode.

The program can be run by typing run ioio in ioio.apx from the R> prompt. The program
used by ioio is REFLIST. The program can be run using menus. The initial menu is
shown below. - o '

Figure 16: HHVT bibliography menu

Highlight (1) Enter new articles. Press
The next menu to appear selects the appropriate list.

Figure 17: List selection menu

Highlight vDC. Press (|
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Next, a screen will show where you can add or list data entries in the Bibliography
Database. The database contains the following information for each article:

Reference Number
Author (s)

Title

Journal

Volume

Pages

Date

Category

Method

Figure 18: Bibliography data input listing prompts

Each article is identified using descriptors for the general groupings into
categories, and a descriptor for the compression methods used in the article. The
category descriptors used are

Block

HVS

Hybrid
Implementation
Predictive
Reversible
Survey
Transform
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The menu across the bottom of the screen displays key strokes which modify the
database files. When you have completed making changes or additions to the database,
press [ The following menu appears across the screen top.

. This enters the changes to the database.
three times to return to the HHVT Bibliography menu.
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Highlighting item (2) from this menu will generate an ASCII text file from the
database.

Figure 20: Create a reference list menu

Figure 21: Enter a filename for the ASCII text file
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At this screen, in Figure 21, enter the name of the file where R:BASE will store
the ASCII text file. In the example shown, the file is named BIBLIOG.TXT. This
file can be used in a word processor to prepare and print out a
bibliography listing. L L

The following menu demonstrates how to exit from the Database program. Select
item (3) and press (« Enter ). At the R> prompt, type exit. This is shown in
the following figure. Again, the DOS prompt will appear.. :

Figure 22: Exiting the Bibliography Database

The database can be queried using R:BASE to manipulate the data, and any
sorted and/or selected subset of the bibliography can be presented. For detailed
information on how to query the database, refer to the R:-BASE manuals.

118



APPENDIX 2: COMPRESSION PROGRAM

Three computer programs were written to aid in the comparative evaluation of
video compression algorithms. The programs were written using QuickBASIC 4.0 by
Microsoft. The first of the three, 2D_TRNSF.BAS, is used to evaluate the Cosine, Fast
Walsh-Hadamard, and Slant transform algorithms. It is based on an original image
using 8 bpp. The 2D_TRNSF.BAS can be used for comparing results of transform
compression algorithms by varying the following parameters:

1. Image size, (Random, 8 x 8, 16 x 16, 32 x 32, 64 x 64, and 128 x 128; Bubble,
8x 8, and 16 x 16; Edge, 8x 8)

2. Block size, (8 x 8, and 16 x 16)

3. Image, (Random, Bubble, and Edge)

4. Transform algorithm, (DCT, WHT, SLANT, No Transform)

5. Compression, (3, 1, 0.5 bpp)

6. Quantization scheme, (Linear, Max/Gaussian)

The program 2D_TRNSF is listed in the following section. There are two program
files for 2D_TRNSF, an executable compiled version of the program which can be run
by typing 2D_TRNSF at the DOS prompt, and a file which can be run using
QuickBASIC. The program execution, input and output, and user interface are the
same. Use of the program will be illustrated using QuickBASIC (for detailed
information refer to the QuickBASIC users’ manual).

The QuickBASIC screen is shown in Figure 23.

Figure 23: The QuickBASIC screen
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The QuickBASIC menu used to open the program is shown in Figure 24. Open
Program is selected using the cursor movement keys, or using a mouse.

Edit View

Program

Saje Al

Greate File...
Zoad File...
Inload File...

[ TR B RT]

Brint...
pos shell

Exit

Figure 24: QuickBASIC menu, OPEN PROGRAM

A listing of files will be shown as illustrated in Figure 25. The selected file is
typed, or placed in the File Name: box and entered.

pen Program

File Name: |2D TRNSF.BAS

C:\QB45
Files Dirs/Drives

Eo sl CONTOURZ2.BAS DCTDPCM.BAS . 4}
BATCH.BAS CONTOUR3.BAS DECPLOT.BAS BIN
BBP3.BAS COSINE.BAS DEMO1.BAS LIB
BOOT2.BAS CQ1-D.BAS DEMO2,BAS
BOOTCGA.BAS  CQGAUSS.BAS  DEMO3,BAS
CAL.BAS CQLINEAR.BAS EDGEDET.BAS
CHECK .BAS DATCHEK.BAS  EPSON._BAS
COLORS.BAS DATES.BAS FASTWHT.BAS
DgT.BAS

Arrow=Next Item

Figure 25: 2D_TRNSF.BAS program selected from list
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ORIGINAL PAGE IS
OF POOR QUALITY

The selected program will be listed as shown in Figure 26.

File Edit

Figure 26: QuickBASIC program, 2D_TRNSF.BAS, loaded

The program is run by selecting Run, and from the Run menu selecting Start,
shown in Figure 27.

File Edit View Search Debug Calls Optlons

éoﬁtinue F5
Modify GOMMANDS...

Make EXE File...
Make fLibrary...

- Set Main Module,..

Fl=Help | Runs

i

Figure 27: RUN PROGRAM menu

|
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The program will prompt the user for inputs. The program prompts with example
responses are shown in the following:

Enter the image size: 16
Enter the block size: 16

Is the image in a file? N

If the last input had been Y, the program would prompt for an input file name.
The program at this point produces a 16 x 16 image of pixels having a random
distribution of intensities, where the intensities are based on a first order Markov
process. The program continues with the following prompts:

Which transform would you like to use?
1. Discrete Cosine Transform (DCT)
2, Walsh-Hadamard Transform (WHT) [8 or 16 only]
3. Slant Transform {8 only]
4. No Transform
5. Exit
Enter the number of your choice: 1
The next set of program prompts will be:
Which bit allocation would you like to use?
1. 3 bpp, uniformly distributed
2. 3 bpp, sub-optimally distributed
3. 1 bpp, sub-optimally distributed

4. 0.5 bpp, sub-optimally distributed
5. Exit

Enter the number of your choice: 1
This selection sets the compression, from 8 bpp to 3 bpp. Finally the program prompts
will be:
Which quantization scheme would you like to use?
A, Linear (uniform) quantization
B. Max quantizer based on Gaussian distribution
Enter the letter of your choice: B
This completes the requests for inputs. The program in response to this set of
inputs will produce an output display as shown in Figure 28. The output display
contains a vertical column in the upper left of the figure. This column is used to show
the pixel intensity level key. The four square blocks, proceeding clockwise from upper
left, are
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Figure 28: Program output for a random pattern

Upper left: First block, 16 x 16, of selected image
Upper right: 16 x 16 block of transform coefficients. The coefficients are
ordered by frequency, with the lowest frequency term (DC) in

lower right corner, increasing moving up, and increasing
moving to the left.

Lower right: The truncated set of transform coefficients.

Lower left: The image, reconstructed from the truncated set of transform
coefficients.

The table in the lower left of the figure lists the following results:
bpp = 3.00 (The average number of bits per pixel in the compressed image.)

MSE = 0.125 % (The Mean Square Error for the compressed block.)
max 0.125 % (Maximum average block error. Used where the block size
is smaller than the image size, requiring more than one
block to complete the image.)
avg 0.125 % (Combined average error for the number of blocks in the
image. Used where the block size is smaller than the
image, requiring more than one block to complete the
image.)
NSE =9.09% (Normalized Mean Square Error. Error Normalized with
respect to the square of the maximum intensity level.)
max 9.09 % (Maximum NSE for block. Used where the block size is
‘ smaller than the image.)
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avg 9.09 % (Combined average NSE for the number of blocks used in
the image, where the block size is smaller than the
image.) o -
Figure 29 shows the output display for a stored image of a bubble superimposed
on a background of random pattern ofintensities. Theinput, in response to the program
prompt, is shown below: o '

Is the image in a file Y
Enter the filename: BUBBLE.IMG

Figure 29: Program output for a bubble pattern

Figures 30 and 31 show successive output displays for the file BUBBLE.IMG,
where the image size is 16 x 16 and the block size is 8 x 8. There are 4 blocks required
to complete the 16 x 16 image. The first block is shown in Figure 30. Three successive
displays for the three remaining blocks are obtained by depressing the space bar. Note
the change in error statistics between the two figures.
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npp = 3.080
wE = 0.143 %
i max 0.143 %
avg 8.143 %
NSE = B6.75%
max 6.75%
awg 6.75%

Figure 30: Program output for a bubble pattern using an 8x 8 block DCT

W
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Figure 32 shows the output display for the file EDGE1508.IMG. The display is
for an image size of 8 x 8; a block size of 8 x 8; using the DCT, 3 bpp, and the Max
quantizer.

M
/

pp =

Figure 32: Program output for an edge pattern using an 8 x 8 block DCT

Figure 33 shows the File menu, selecting Exit ends operation of the program.

Save is...
Saye All

§reate File...
Load File...
fUnload File...

Erint...
DOS Shell

Figure 33: File menu, EXIT
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The second program for evaluation of video compression is used to evaluate the
use of one dimensional transforms with DPCM. There are two program files,
XFRMDPCM.BAS which can be run using QuickBASIC, and an executable file which
can be run by typing xfrmdpcm at the DOS prompt. The program will operate with
image sizes of 8 x 8 and 16 x 16. The block size is restricted to 8 x 8.

The third program, EDGEDET.BAS, is a simple edge detection algorithm. It
operates with an image size of 16 x 16 using BUBBLE.IMG, and EDGE.IMG using
an image size of 8 x 8. There is not an executable file for this program, therefore it
must be run using QuickBASIC.

The enclosed disk contains all of the files, listed in Figure 34,ina directory named
QBFILES.

Figure 34: List of files in QBFILES directory

The files include executable files for 2D_TRNSF and XFRMDPCM, and
corresponding files which can be run in QuickBASIC. In addition, there is the The
EDGEDET.BAS which can be run in QuickBASIC. The files also include all of the
necessary FILENAME.BAS subroutine files, IMAGEFILE.IMG files for the bubble
and edge images, XFRM.BI files for the transforms, and the TRUNC.DAT files used
in compressing the transform coefficient arrays.
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2D_TRNSF.BAS

DECLARE SUB plot (n%, x! (), lgrthm%) - ’
DECLARE SUB transform (n%, its!{(), c!(), LUT!(), Xform%, dir$)
DECLARE FUNCTION NumRemBlanks$ (n%)

DECLARE SUB stats (n%, i2!(), i!(), dc!, bittotals)
DECLARE FUNCTION linquant! (x!, K%)

DECLARE FUNCTION del! ()

DECLARE SUB picture (imagesiz%, image%())

! SINCLUDE: "COSINE.BI’

! SINCLUDE: ’'FASTWHT.BI’

* SINCLUDE: ’HALFTONE.BI’

f SINCLUDE: 'CQ.BI’

’ $INCLUDE: ’SLANT.BI'

! This program demonstrates the effects of image compression using
’ two-dimensional transform techniques.
! Written by Marc S. Neustadter, Analex Corporation, 1988.
DIM SHARED tile$(15)
! This statement should be removed to produce the identical image every time.
RANDOMIZE TIMER
! This subroutine call produces the tiles for the gray scale.
' See the documentation on the subroutine ’"halftone’ for details.
CALL halftone(tile$())
' This section prompts for the image size (# of pixels in each dimension)
r and the transform block size (# of pixels). The arrays are then
’ dimensioned appropriately.
getimg: SCREEN , , 1, 1

CLS 0
LOCATE 7, 10: INPUT "Enter the image size: ", imagesiz%
LOCATE 8, 10: INPUT "Enter the block size: ", n% * The block size

is n% x n%.
REDIM image% (imagesiz% - 1, imagesiz% - 1), B%(n% - 1, n% - 1),
image2% (imagesiz% - 1, imagesiz% - 1)
REDIM intensity(n% - 1, n% - 1), coeff(n% - 1, n% - 1)
REDIM intensity2(n% - 1, n% - 1), LUT(n% - 1, n% - 1), ilut(n% - 1, n%
- 1) . o . -
! This section offers the choice of using a previously stored image
' or producing a new one.
LOCATE 10, 10: INPUT "Is the image in a file™; YorN$
IF UCASES (LEFTS$ (YOorN$, 1)) = "Y" THEN
LOCATE 11, 10: INPUT "Enter the filename: ", imfile$
OPEN imfile$ FOR INPUT AS #3
FOR i = 0 TO imagesiz% ~ 1
FOR j = 0 TO imagesiz$% - 1
INPUT #3, image% (i, j)
NEXT 3
NEXT i
CLOSE #3
ELSE
CALL picture{imagesiz%, image%()) ! Form the original image.
END IF
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menu;

selal:

CLS 0

LOCATE 6, 10: PRINT "Which transform would you like to use?"™

LOCATE 7, 15: PRINT "1. Discrete Cosine Transform (DCT)"

LOCATE 8, 15: PRINT "2. Walsh-Hadamard Transform (WHT) [8 or 16 only]"
LOCATE 9, 15: PRINT "3. Slant Transform [8 onlyl"™

LOCATE 10, 15: PRINT "4. No Transform™

LOCATE 11, 15: PRINT "5. Exit"™

LOCATE 13, 10: INPUT "Enter the number of your choice: ", Xform%

CLS O

LOCATE 6, 10: PRINT "Which bit allocation would you like to use?”
LOCATE 7, 15: PRINT "1. 3 bpp, uniformly distributed"

LOCATE 8, 15: PRINT "2. 3 bpp, sub-optimally distributed”

LOCATE 9, 15: PRINT "3. 1 bpp, sub-optimally distributed"

LOCATE 10, 15: PRINT "4. 0.5 bpp, sub-optimally distributed"”

LOCATE 11, 15: PRINT "5. Exit"

PRINT : LOCATE , 10: INPUT "Enter the number of your choice: ", allock

/ The files of bit allocations must exist where they can be found.

! Loads

use?”

quant$

SELECT CASE alloc%

CASE 1

file$ = "3b" + NumRemBlanks$(n%) + "e"
CASE 2

file$ = "3b" + NumRemBlanks$(n%) + "f"
CASE 3

file$ = "1b™ + NumRemBlanks$(n%) + "f"
CASE 4

file$ = "1%2b"™ + NumRemBlanks$(n%) + "f"
CASE 5

GOTO getout
CASE ELSE

PRINT "Invalid choice"

GOTO selal
END SELECT

bittotal% = 0
ON ERROR GOTO Handler
the bit allocation.
OPEN file$ + ".dat"™ FOR INPUT AS #1
ON ERROR GOTO 0
FOR L = 0 TO n%¥ - 1
FOR § = 0 TO n% - 1
INPUT #1, B%(i, J)
bittotal% = bittotal% + B%(i, J)
NEXT j
NEXT i
CLOSE #1
LOCATE 13, 10: PRINT "Which quantization scheme would you like to

LOCATE 14, 15: PRINT "A. Linear (uniform) quantization®
LOCATE 15, 15: PRINT "B. Max quantizer based on Gaussian distribution™
PRINT : LOCATE 17, 10: INPUT "Enter the letter of your choice: ",

quant$ = UCASES$ (quant$)

! Initializes the display.

SCREEN 8, , 2, 2 ' EGA 640 x 200 with tiling.
CLS 0

WINDOW

VIEW
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This loop puts the gray scale on the screen.
FOR K= 0 TO 15
LINE (52, 7 * K)-(68, 7 * K + 7), 3, B
PAINT (59, 7 * K + 5), tile$(K), 3
NEXT K
WINDOW (0, 0)-(n%, n$%)
FOR K = 0 TO imagesiz% \ n% - 1
FOR L = 0 TO imagesiz% \ n% - 1

FOR i = 0 TO n% - 1 ! Get the current block.

FOR j = 0 TO n% - 1
intensity(i, j) = image%(K * n% + i, L * n% + J) / 256

NEXT 3j
NEXT i
VIEW (140, 96)-(333, 0)
CALL plot (n%, intensity(), 0) ' Plot the block.

This section calls the subroutines to produce look-up tables for the

forward and inverse transforms. The fast WHT doesn’t need a look-up table.

SELECT CASE Xform$
CASE 1
CALL mklutcos(n%, LUT(), ilut{())
CASE 2
CASE 3 )
CALL mklutslant (n%, LUT(), ilut())
CASE 4
FOR i = 0 TO n% - 1
FOR j = 0 TO n% - 1
intensity2(i, j) = linquant (intensity(i, 3j), B%(i, 3))
NEXT j
NEXT i
GOTO recon
CASE ELSE
GOTO getout
END SELECT
Transform the block.
CALL transform(n%, intensity(), coeff(), LUT(), Xform%, "for")
VIEW (407, 96)-(600, 0)
CALL plot (n%, coeff(), 1)
IF quant$ = "B" THEN

CALL cquant (n%, coeff(), B%()) ’ Quantize the coefficients.
ELSE

CALL clquant (n%, coeff(), B%())
END IF

VIEW (407, 199)-(600, 103)
CALL plot(n%, coeff(), 1)
Inverse transform

CALL transform(n%, coeff(), intensity2(), ilut(), Xform%, "inv")

FOR i = 0 TO n% - 1 ' Quantize the reconstructed
FOR §j = 0 TO n% -1 4 image to 8 bits.
intensity2(i, j) = linquant (intensity2(i, 3), 8)
NEXT J
NEXT i
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recon: VIEW (140, 199)-(333, 103)

CALL plot{n%, intensity2(), 0) ! Plot the reconstructed
block.

CALL stats(n%, intensity2(), intensity(), coeff(0, 0) / n%,
bittotal$)

! Stores the current block in the reconstructed image.
FOR i =0 TO n% -1
FOR j =0 TOn% -1
image2%(K * n% + 1, L * n% + j) = intensity2(i, j) * 256
NEXT 3
NEXT i
DO
LOOP WHILE INKEYS$ = ww
NEXT L: NEXT K
SCREEN , , 1, 1
CLS 0
LOCATE 7, 15: PRINT "1, Another transform on the same image™
LOCATE 8, 15: PRINT "2. A new image"
LOCATE 9, 15: PRINT "3. Exit"™
LOCATE 11, 10: INPUT "Enter the number of your choice: ", actiong
SELECT CASE action%
CASE 1
GOTO menu
CASE 2
GOTO getimg
CASE ELSE
OPEN "original,img™ FOR OUTPUT AS #2
FOR i = 0 TO imagesiz% - 1
FOR j = 0 TO imagesiz% - 1
WRITE #2, image%(i, 3J)
NEXT 3
NEXT i
CLOSE #2
OPEN "received.img” FOR OUTPUT AS #2
FOR 1 = 0 TO imagesiz% - 1
FOR j = 0 TO imagesiz$ - 1
WRITE #2, image2%(i, 3j)
NEXT 3
NEXT i
CLOSE #2
SCREEN 0
END SELECT
getout: END
Handler: "Error handling routine.
errnum = ERR
IF errnum = 53 THEN ffile not found
CLOSE #1
PRINT "This choice is not available for the current block size."
PRINT "Please make another choice."
RESUME selal
ELSE
ERROR errnum
END IF
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FUNCTION del
¢ This function returns a value to be used as
’ the increment between succesive pixels.
/ It approximates a Gaussian distribution.
r =2 % RND(1) - 1
SELECT CASE 10 * RND(1l)
CASE IS <= 1%
d= .0315 * r
CASE 1% TO 2#
d = ,0318 * r + SGN(r) * .0315
CASE 2# TO 3%
d = .0332 * r + SGN(r) * .0633
CASE 34 TO 4#
d = .,0345 * r + SGN(r) * ,0965
CASE 4#% TO 5%
d= .038 * r + SGN(r) * .131
CASE 5% TO 6#
d= .042 * r + SGN(r) * .169
CASE 6% TO 6.5%
d = .023 * r + SGN(r) * .211
CASE 6.5%# TO T#
d = .025 * r + SGN(r) * .234
CASE 7# TO 7.5#
d= .029 * r + SGN(r) * .259
CASE 7.5% TO 8#
d = .032 * r + SGN(r) * .288
CASE 8# TO B8.5#
d= .04 * r + SGN(r) * ,32
CASE 8.5#% TO 9%
d= .051 * r + SGN(x) * .36
CASE 9% TO 9.5#%
d= .079 * r + SGN(r) * .411
CASE 9.5 TO 9.75
d= .07 * r + SGN(r) * .49
CASE 9.75 TO 9.875
d = .065 * r + SGN(r) * .56
CASE ELSE
d = .375 * r + SGN(r) * .625
END SELECT
r Adjust for the amount of variation desired in the image.
del =4 * 256 / 4
END FUNCTION
FUNCTION linguant (x, K%)
' This function returns the linearly quantized (to K% bits) value of x.
L& = 2 ~ K%
linquant = FIX(L& * x) / L&
END FUNCTION
FUNCTION NumRemBlanks$ (n%)
/ This function converts a number to a string with all blanks stripped off.
num$ = STRS (n%)
NumRemBlanks$ = LTRIMS (RTRIMS$ (num$))
END FUNCTION
SUB picture (imagesiz%, image%())
¢ This subroutine produces the input image.
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! First column
image%$(0, 0) = INT(256 * RND(1l))
FOR j = 1 TO imagesiz% - 1
t0: temp = image%(0, j - 1) + del
IF temp < 0 OR temp >= 256 THEN GOTO t0
image$ (0, j) = INT(temp)
NEXT j
* All the rest
FOR 1 = 1 TO imagesiz% - 1
image% (i, 0) = (image%(i - 1, 0) + image%(i - 1, 1)) \ 2
FOR j = 1 TO imagesiz% - 1
t: temp = (image%(i - 1, j) + image% (i, j - 1)) / 2 + del
IF temp < 0 OR temp >= 256 THEN GOTO t
image¥ (i, j) = INT (temp)
NEXT J
NEXT 1
END SUB
SUB plot (n%, x(), lgrthm$%)
’ This subrcutine plots the array x on the screen.
f lgrthm% should be 1 for a log plot, otherwise the plot will be linear.
DIM y%$(n% - 1, n% - 1)
PALETTE 4, 4 ! Plot the outlines in red (non-gray).
FOR 1 =0 TOn% -1
FOR jJ = 0 TO n% - 1
IF lgrthm% = 1 THEN
y¥(i, Jj) = INT(LOG(ABS(x(i, j) + 1E-20)) / LOG(1.5) + 16) ' The argument
of the second log function is the base of the log.
ELSE
y¥(i, J) = INT(x(i, 3) * 16)
END IF
IF y%(i, j) < O THEN y%(i, J) = 0
IF y%$(i, j) >= 16 THEN y%(i, J) = 15

LINE (j, D)-(3 +1, i +1), 4, B ' Outline the box & tile it.
PAINT (j + .5, i + .5), tile$(y%(i, 3)), 4
NEXT 3
NEXT i
PALETTE 4, 0 * Change the outlines to black.
END SUB

SUB stats (n%, i2(), i(), dc, bittotal%) STATIC
’ This subroutine computes and displays the statistics
for evaluation of the compression method.

bpp = bits per pixel

MSE = mean sSquare error

NSE = normalized square error (square error / AC energy)
msen = 0: msed = 0
count = count + 1

LI L B |

FOR i =0 TO n¥ -~ 1 ! Compute the MSE,
FOR j =0 TO n% -1
msen = msen + (i2(i, j) - i(i, jJ)) ~ 2
msed = msed + (i(i, 3J) - dc) ~ 2
NEXT 3
NEXT i

VIEW PRINT 16 TO 25

bpp = bittotal% / n% ~ 2

mse = 100 * msen / n% ~ 2

IF mse > msemax THEN msemax = mse
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msetot = msetot + mse
nse = 100 * msen / msed
IF nse > nsemax THEN nsemax = nse
nsetot = nsetot + nse
PRINT "bpp = "; : COLOR 13: PRINT USING “#.###"; bpp: COLOR 15
PRINT
PRINT "MSE = "; : COLOR 14: PRINT USING X 3% 2 2 _%“; mse: COLOR 15
PRINT " max "; : PRINT USING "#.### _%"; msemax
PRINT " avg "; : PRINT USING "#.### _%"; msetot / count
PRINT
PRINT "NSE = "; : PRINT USING "###.#% _%"; nse
PRINT " max "; : PRINT USING "###.## _%"; nsemax
PRINT ™ avg "; : PRINT USING "###.## _%"; nsetot / count
END SUB
SUB transform (n%, its(), c(), LUT(), Xform%, dir§)
DIM temp(n% - 1, n% - 1), rowi(n¥ - 1), rowo(n% - 1)
/ This subroutine computes the two-dimensional (forward or inverse)
’ transform of the n% x n% array its. The result is
¢ returned in the array c.
! perform one-dimensional transform on each row.
FOR i =0 TO n%¥ - 1
FOR j = 0 TO n% - 1
rowi(j) = its(j, i) ’Includes matrix transpose.
NEXT 3j
GOSUB pick
FORu =0 TO n% - 1
temp (i, u) = rowo(u)
NEXT u
NEXT i :
f Transform each column.
FORu =0 TO n% -1
FOR i =0 TO n% - 1 -

rowi(i) = temp(i, u) "Includes matrix transpose.
NEXT i
GOSUB pick
FOR v =0 TO n% - 1
c(u, v) = rowo(v)
NEXT v
NEXT u
GOTO done
7 ok %k d ok k subroutine %k k Kk k
pick:
SELECT CASE Xform%
CASE 1

IF dir$ = "for™ THEN
CALL DCT1D(n%, rowi(), rowo(), LUT())
ELSEIF dir$ = "inv"™ THEN
CALL IDCT1D(n%, rowi(), rowo(), LUT())
END IF
CASE 2
CALL WHT1D(n%, rowi(), rowo())
CASE 3
CALL SLANT1D(n%, rowi(), rowo(), LUT())
END SELECT
RETURN
done: END SUB
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